

Author:
Andis Lagzdiņš (Tilde), Uldis Siliņš (Tilde), Andrejs Vasiļjevs (Tilde), Aivars
Bērziņš (Tilde), Indra Sāmīte (Tilde), Athanasia Kolovou (ILSP), Dimitris Gkou-
mas (ILSP), Penny Labropoulou (ILSP), Stelios Piperidis (ILSP)

Dissemination Level: Public

Date: 28-02-2022

D3.4
Platform GUI
(final release)

European Language Grid
D3.4 Platform GUI (final release)

ELG 2/62

About this document

Project ELG – European Language Grid

Grant agreement no. 825627 – Horizon 2020, ICT 2018-2020 – Innovation Action

Coordinator Prof. Dr. Georg Rehm (DFKI)

Start date, duration 01-01-2019, 42 months (GA amendment version: AMD-825627-7)

Deliverable number D3.4 Grid Platform Interactive Interface and Information System
 Deliverable title Platform GUI (final release)

Type Report

Number of pages 62

Status and version Final – Version 1.0

Dissemination level Public

Date of delivery Contractual: 28-02-2022 – Actual: 28-02-2022

WP number and title WP3: Grid Platform – Interactive Interface and Information System

Task number and title Task 3.3: Set up and maintenance of CMS for the ELG; Task 3.4: Development
of GUIs for portal services; Task 3.6: Development of Catalogue GUI

Authors
Andis Lagzdiņš (Tilde), Uldis Siliņš (Tilde), Andrejs Vasiļjevs (Tilde), Aivars Bēr-
ziņš (Tilde), Indra Sāmīte (Tilde), Athanasia Kolovou (ILSP), Dimitris Gkoumas
(ILSP), Penny Labropoulou (ILSP), Stelios Piperidis (ILSP)

Reviewers Khalid Choukri (ELDA), Ulrich Germann (UEDIN)

Consortium Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

Institute for Language and Speech Processing (ILSP), Greece

University of Sheffield (USFD), United Kingdom

Charles University (CUNI), Czech Republic

Evaluations and Language Resources Distribution Agency (ELDA), France

Tilde SIA (TILDE), Latvia

Hensoldt Analytics (HENS), Austria

Expert System Iberia SL (EXPSYS), Spain

 University of Edinburgh (UEDIN), United Kingdom

EC project officers Philippe Gelin, Miklos Druskoczi

For copies of reports and other
ELG-related information,
please contact:

DFKI GmbH
European Language Grid (ELG)
Alt-Moabit 91c
D-10559 Berlin
Germany

Prof. Dr. Georg Rehm, DFKI GmbH
georg.rehm@dfki.de
Phone: +49 (0)30 23895-1833
Fax: +49 (0)30 23895-1810

http://european-language-grid.eu
© 2022 ELG Consortium

European Language Grid
D3.4 Platform GUI (final release)

ELG 3/62

Table of Contents

List of Figures ___ 4

List of Tables ___ 5

Abstract ___ 7
1 Introduction __ 7

2 Key Developments since the Interim Release __ 8

3 Front-end Architecture Overview __ 8
4 Central Portal ___ 10

4.1 Technical Description ___ 10

4.2 Functionality and Web Interfaces __ 12
5 Content Management System __ 13

5.1 Technical Description ___ 13

5.2 Functionality and Web Interfaces __ 14
6 Catalogue UI __ 17

6.1 Technical description ___ 17

6.2 Functionality and Web Interfaces __ 21
6.2.1 Catalogue Browse and Search Page __ 22

6.2.2 Landing page for items __ 23

6.2.2.1 Header ___ 25
6.2.2.2 Main Content Area ___ 25

6.2.2.3 Right sidebar __ 29

6.2.2.4 Bottom Content ___ 30
6.2.2.5 Tabs ___ 31

6.2.3 Dashboard __ 32

6.2.3.1 Consumer's grid and functionalities __ 34
6.2.3.2 Provider's grid and functionalities ___ 34

6.2.3.2.1 Accessing the interactive editor ___ 34

6.2.3.2.2 Interactive editor ___ 35
6.2.3.2.3 Uploading metadata records ___ 41

6.2.3.2.4 My pages and actions for providers __ 42

6.2.3.3 Validator's grid and functionalities ___ 46
6.3 Technical Description ___ 49

6.4 Authentication GUI customization ___ 49

7 Billing Solution ___ 54
7.1 Requirement analysis and market research __ 54

7.2 Billing Functionality Overview ___ 57

7.3 Billing Configuration __ 58
7.4 Implemented Billing Solution ___ 59

8 Conclusion __ 62

European Language Grid
D3.4 Platform GUI (final release)

ELG 4/62

List of Figures

Figure 1: GUI architecture overview ___ 9	
Figure 2: Angular application life cycle ___ 10	
Figure 3: Same style of the different solutions – front page search bar _______________________________ 11	
Figure 4: Same style of the different solutions – catalogue search bar ________________________________ 12	
Figure 5: News page articles ___ 12	
Figure 6: Portal menu and submenu __ 13	
Figure 7: CMS life cycle ___ 14	
Figure 8: Landing page in the CMS __ 15	
Figure 9: Menu link editing __ 15	
Figure 10: Adding menu item __ 16	
Figure 11: Menu items received as JSON object through REST request _______________________________ 16	
Figure 12: Menu permission mechanism ___ 17	
Figure 13: News page view __ 17	
Figure 14: Data exchange with and without code splitting ___ 19	
Figure 15: Ranking metrics for ELG at Google search results __ 20	
Figure 16: Performance metrics for R3 __ 21	
Figure 17. List view of catalogue contents __ 22	
Figure 18: Facet for language __ 23	
Figure 19: Landing page for a corpus __ 24	
Figure 20: Header for an organization with the organization logo ___________________________________ 25	
Figure 21: Header for an organization with default icon ___ 25	
Figure 22: Main area for a corpus ___ 26	
Figure 23: Landing page for an organization __ 27	
Figure 24:Landing page for a tool/service __ 28	
Figure 25: Landing page for a project __ 29	
Figure 26: Sidebar for a resource ___ 30	
Figure 27: Bottom content area for resources ___ 30	
Figure 28: Publication status bar and Actions areas __ 31	
Figure 29: Tabs for ELG-compatible services __ 31	
Figure 30: Test/Try out tab for a sample Information Extraction service ______________________________ 32	
Figure 31: Provider's grid ___ 32	
Figure 32: My items page (for providers) ___ 33	
Figure 33: Bulk actions on my items ___ 34	
Figure 34: Selection of item type for the editor __ 35	
Figure 35: Editor form for corpus ___ 36	
Figure 36: Search for existing items ___ 37	
Figure 37: View of a multilingual element with help tips and examples _______________________________ 37	
Figure 38: Selecting language for a multilingual element __ 38	
Figure 39: Hidden elements ___ 38	
Figure 40: Opening a hidden element in order to add metadata ____________________________________ 38	

European Language Grid
D3.4 Platform GUI (final release)

ELG 5/62

Figure 41: Lookup field ___ 39	
Figure 42: Use of accordion for long elements __ 40	
Figure 43: Validation error message ___ 41	
Figure 44: Upload and Validate functionalities __ 42	
Figure 45: Upload metadata records __ 42	
Figure 46: My items page ___ 44	
Figure 47: Actions on the landing page of a record ___ 44	
Figure 48: Action for creating new versions ___ 45	
Figure 49: Dialogue for the creation of a new version ___ 45	
Figure 50: Landing page for a resource with multiple versions ______________________________________ 46	
Figure 51: My validation tasks ___ 47	
Figure 52: Actions for metadata validation ___ 47	
Figure 53: Validation form for technical validators ___ 48	
Figure 54: Service registration form Authentication Solution _______________________________________ 48	
Figure 55: Login form __ 50	
Figure 56: New user registration form ___ 51	
Figure 57: Password recovery form ___ 51	
Figure 58: Styled form for password change __ 52	
Figure 59: User account edit form __ 53	
Figure 60: User submitted attributes in Keycloak Management Console ______________________________ 54	
Figure 61: Price Calculation Components ___ 55	
Figure 62: Chargebee subscription management window ___ 57	
Figure 63: Sample ELG branded invoice generated by Chargebee ___________________________________ 58	
Figure 64: Branded sample test email sent by Chargebee __ 59	
Figure 65: Account information at Billing checkout scenario _______________________________________ 60	
Figure 66: Billing address at Billing checkout scenario ___ 60	
Figure 67 Payment details at Billing checkout scenario __ 61	
Figure 68: Summary at Billing checkout scenario ___ 61	
Figure 69: Email message warning about the next payment __ 62	

List of Tables

Table 1: Actions allowed on metadata records by publication status _________________________________ 43	
Table 2: Validation types by item type ___ 46	

European Language Grid
D3.4 Platform GUI (final release)

ELG 6/62

List of Abbreviations

API Application Programming Interface

CMS Content Management System

CSS Cascading Style Sheets

ELG European Language Grid

GPL GNU General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

JWT JSON Web Token

LT Language Technologies

MVP Minimum Viable Product

POS Part of Speech

REST Representational State Transfer

SEO Search Engine Optimization

SME Small and Medium Size Enterprises

SPA Single Page Application

SSR Server-Side Rendering

UI User Interface

URL Uniform Resource Locator

UX User Experience

W3C World Wide Web Consortium

WCAG Web Content Accessibility Guidelines

WYSIWYG What You See Is What You Get

European Language Grid
D3.4 Platform GUI (final release)

ELG 7/62

Abstract

This document provides a description of the ELG platform graphical user interfaces. We present an overview of

the overall frontend architecture and provide a technical description and implementation details for the solu-

tions designed for the central portal, the CMS, the catalogue UI, the implementation of UX and the authentica-

tion solution, and the billing module.

1 Introduction

This document describes the state of development of the ELG platform graphical user interface (GUI), as de-

ployed in Release 3.0 of the ELG platform at https://live.european-language-grid.eu. Previous deliverables D3.2

and D3.3 have been taken as a base by incorporating new changes since release 2.0.

ELG targets a wide range of users with different requirements and expectations, broadly divided into the fol-

lowing groups (cf. Deliverables D2.1, D2.3 and D7.1 for more information):

• content providers and developers and LT integrators are providers and consumers of LT resources, as

described above,

• information providers and information seekers are providers and consumers of LT-related (meta)-in-
formation,

• citizens, i.e., individuals who want to inform themselves about LT and ELG,

• ELG technical users, including (a) the validators who are responsible for supervising the publication of
resources in the platform, and (b) platform and content administrators, i.e., the ELG technical team

that administers and monitors the day-to-day operation and performance of the platform.

The Platform GUI and the backend that drives it comprises the following components:

• The Central Portal is the network of web pages that provide user role-specific journeys through the

ELG’s offerings. User roles include, among others, Consumers who use the ELG to search for infor-
mation or use services, and Providers, who supply resources or services. A journey is a use-case specific

network of paths that describes the user experience as they navigate through the Platform in order to

achieve their objectives. Journey design is a core component of UX design. In particular, we added a
Provider role and Journey to facilitate contributions to the ELG.

• The Content Management System (CMS) drives the dynamic generation of web pages that users of the

portal interact with.
• The Catalogue UI allows users to interact with the ELG Catalogue of resources, services, technologies,

etc.

• The Authentication Mechanism authenticates users and grants or denies access rights to the platform
depending on the user’s role within the platform.

• Try-out GUIs have been developed for selected service types.

European Language Grid
D3.4 Platform GUI (final release)

ELG 8/62

An external online billing platform Chargebee1 has been chosen to integrate with the ELG platform to provide a

billing prototype.

2 Key Developments since the Interim Release

During the last year we have been stabilizing the existing functionality, validated discoverability against search

engines and analysed performance with online tools. We have also worked on the following new functionali-

ties:

• The Development infrastructure of the Central Portal and Drupal2 has been moved to ELG Gitlab.

• The Central portal has a new layout and visual identity.

• The CMS has been adjusted to provide missing functionality for static content migration from the pro-
ject’s website.

• The Keycloak3 authentication system has been improved and stabilized.

• We discussed the requirements for the Billing module, performed market research about existing bill-
ing platforms, selected the most suitable platform, and configured and set up a prototype for demon-

strating the billing scenario. Thus, the Billing module is ready to launch the commercialization strategy.

3 Front-end Architecture Overview

The GUI (or frontend) communicates with end users and clients directly, so it is crucial to provide the best pos-

sible solution not only from the usability and information architecture point of view, but also from a technolog-
ical perspective. As both search engines and information sharing in social portals are essential for the European

Language Grid to attract more attention and visitors, the solution must provide technical support for them.

On the other hand, there are different teams from the consortium bringing different software and product

backgrounds. The GUIs are developed by fulfilling various tasks and timelines, so this challenge must be taken

into consideration when providing a good balance between the development process and the result.

With the purpose of creating a single integrated GUI platform for end-users, search engines and social platform

agents (content scrappers), a dedicated architecture has been created and implemented that provides good

user experience and that is suitable for different development teams and processes.

1 https://www.chargebee.com
2 https://www.drupal.org
3 https://www.keycloak.org

European Language Grid
D3.4 Platform GUI (final release)

ELG 9/62

Figure 1: GUI architecture overview

The frontend architecture consists of the following independent software solutions (see Figure 1):

• ELG frontend/Central Portal – central entry point for ELG.

• Content Management System (CMS) – provides back-office functionality for static content manage-

ment.
• Catalogue UI – provides GUI for searching, opening LT services, tools, data, projects, and other dynamic

content.

• Authentication service – an authentication service provider that is shared across all GUIs and backend
services.

• Trial GUIs – multiple small graphic user interfaces that are dedicated to letting the end-users to try-out

specific types of ELG services.

• Integration with Chargebee, an external online billing solution.

Both Drupal (a content management system) and Keycloak (an authentication solution) are cross-functional

providers for different GUI solutions. The content management system shares the design and content infor-

mation that is reused in different GUI parts, while the authentication solution provides centralized user man-
agement and a single sign-on capability to ensure smooth switching between different GUI parts of the ELG

platform.

The previous figure shows that the CMS is used to share different assets for all GUIs:

• User training materials – this section is mainly dedicated to the central ELG frontend, a user with appro-

priate rights is able to upload and manage training materials and documents in various formats, e.g.,

European Language Grid
D3.4 Platform GUI (final release)

ELG 10/62

docx, images, PDFs. These materials will be published by the central portal, but if needed, can be also

published using the Catalogue UI.

• Page content as HTML – these html documents or pages will also be published in the central ELG portal,
e.g., content for the first page, about, contacts etc.

• Menus – different menus are stored and managed centrally, every ELG platform component can access

them and download in JSON format using REST API
• Stylesheets – CMS is used as central point for storing the ELG theme designs that are used in various

parts of the GUI, also by the Language Resource (LR) service specific try-out GUIs. These stylesheets can

be downloaded as CSS files.
• Design elements – the CMS is also used to centrally store design and page elements, such as images,

fonts, logos.

4 Central Portal

4.1 Technical Description
The central entry point of the European Language Grid is served by a single page application (SPA), which is
built using Angular framework. This software retrieves content from the Content Management System (CMS),

redirects the user to the Catalogue, and allows the user to login.

Figure 2: Angular application life cycle

European Language Grid
D3.4 Platform GUI (final release)

ELG 11/62

Figure 2 above describes how the Angular application development process is organised. Angular frontend de-

velopers upload their code repository to the cloud platform Gitlab. After that, a GitLab Pipeline is automatically

triggered that pulls the source code for the Angular application, adds configuration values, builds, and tags
Docker images, and finally pushes newly created images to the private Gitlab Container Registry. Each Docker

image version is tagged automatically with an auto-increasing build number and with a static tag to control re-

lease versions manually.

One of the challenges of modern single page application (SPA) that are built using JavaScript technologies is
accessibility to search engine crawlers – tools that read information from the application and put it into search

engines. Search engine crawlers can only access static HTML files. They do not run on the browser, and thus

cannot access web pages which are generated dynamically during execution in the browser only when this is
accessed. In these cases, most of the important information from a page is not read. However Angular can han-

dle this issue. There is a way to develop and deploy the Angular application so that it can provide whole html

files to search engine crawlers. This approach is called Angular Universal and an application built this way runs
on the browser and renders the application on the server as well. This technology represents a good approach

to meet all search engine optimisation requirements as well as usability best practices. It works as follows:

whenever a user or a web crawler requests a web page, instead of doing it the usual way – answering user re-
quests with html and all the JavaScript files – an intermediate step is introduced that renders the answer for

the user and sends whole html files as an answer to the user. As soon as this html is delivered to the user’s

browser, the user can see the result immediately, and when the JavaScript is delivered, the application be-

comes interactive.

There is a need for a uniform web design implementation across the whole portal. Recreating every design ele-

ment from scratch would be unnecessary as there are design systems available that operate with pre-created

design element libraries that can be adjusted to the needs of the project. The Google Material4 design system
was chosen as a starter theme for ELG and it has been useful for different parts of the project. As the applica-

tion grows and is put together with multiple tools and project parts, there is a need for a uniform design as

well. Sharing Material design with CMS, service GUIs and the catalogue has helped to ensure a seamless look

on the application’s visual parts (see Figure 3 and Figure 4).

Figure 3: Same style of the different solutions – front page search bar

4 https://material.io

European Language Grid
D3.4 Platform GUI (final release)

ELG 12/62

Figure 4: Same style of the different solutions – catalogue search bar

4.2 Functionality and Web Interfaces
The landing page is built as the main entry point where the user that is visiting the portal for the first time can
have a full idea of what kind of resources and services one can find. Just after the search bar that leads to the

catalogue is a statistics section that is dynamically updated with fresh data on how many corpora, tools/ser-

vices, conceptual resources, models and grammar, organizations and projects can be found in the catalogue.
Right after the statistics is a section with different widgets that display featured, most popular and most recent

catalogue resources.

The main menu is the way to quickly navigate to the most important parts of the portal.

"LT services & resources" and "LT community" points to the catalogue collection of resources.

"About" is a collection of various CMS articles about portal and community. Information on these pages contain

the same information as pages of the initial project website (currently available at https://www.european-lan-

guage-grid.eu) to provide a smooth transition that goes unnoticed for the users.

There is a blog-style news page (see Figure 5) that is used for collecting recent news posts and for keeping visi-

tors up to date about the European Language Grid.

Figure 5: News page articles

"Documentation" is an extensive collection of documentation on how to use the portal and how to contribute

to ELG as well as integrated all training materials.

European Language Grid
D3.4 Platform GUI (final release)

ELG 13/62

As some of the menu links lead to a broad collection of documents, there a secondary menu is available that

helps make navigation easier and the information structured. As you can see in Figure 6 there is a way to add a

third level menu ensuring that it will always be possible to add new links and the menu won't run out of space.

Figure 6: Portal menu and submenu

When a user reaches the main page, the single sign-on mechanism checks whether the user has been signed in

before and if they have – it signs them on. Some pages are restricted to unauthorized users (e.g., upload of the
resource) and some are not (such as catalogue search results). Depending on whether only authorized users

can see the content, and following the initial checking, an unauthorized user may be sent to the login screen.

The frontend portal is built according to all search engine optimization guidelines5 so that all necessary prereq-

uisites are met for the portal to be highly ranked in various search engine results.

5 Content Management System

5.1 Technical Description
Drupal was chosen for static content management, as it is one of the leading and one of the most popular Con-

tent Management Systems worldwide and it provides good support for functionality, management, and secu-

rity. The most crucial argument for Drupal and not WordPress that is a market share leader among content
management systems was security issues and Drupal is considered much secure than WordPress. Drupal acts

as a ‘headless’ solution, which means that it is mainly used as a back-office application and portal users do not

see anything directly from the CMS. For external access, the Drupal server generates menus and html content

pages, and it allows for configuration using the REST API.

5 Search Engine Optimization (SEO) Starter Guide – https://developers.google.com/search/docs/beginner/seo-starter-guide

European Language Grid
D3.4 Platform GUI (final release)

ELG 14/62

Figure 7: CMS life cycle

Figure 7 above describes how the CMS development process works. This process is very similar to the Angular

application development – developers upload their code and seed data to the code repository where auto-
matic pipelines push Docker images to the private Azure Container Registry. For the CMS there are two parts

and two Docker images – one is for the CMS instance and another – for seed data. The seed data container

holds:

• initial data for the CMS database, e.g., site configuration, html content.

• files for the CMS website, e.g., logos, favicon, images, pdf, other downloadable files.

The ELG platform deployment pulls those Docker images by providing image pull secrets.

For our benefit the Drupal instance needed to be extended with several modules:

• CKEditor: This module lets Drupal replace text area fields with a visual HTML editor, usually called

a WYSIWYG editor. This HTML text editor brings many of the powerful WYSIWYG editing functions of

known desktop editors like Word to the web.
• Menu Item Extras: This module lets extra configuration fields for menu items to be added.

• Rest menu Items: This module allows accessing menu items via the Rest protocol.

• Keycloak integration: Integration of our Single Sign On solution.
• Webforms and webforms REST module: This module creates web forms as well as their obtaining and

posting via the REST protocol.

• Page serializer. This module allows to include paging information in news HTTP request.

5.2 Functionality and Web Interfaces
There are multiple content types served by the CMS to the portal. The most basic one is a simple page, for ex-

ample the ELG landing page (see Figure 8). Its content is prepared in the CMS and transferred to the portal in

the form of JSON when requested. To be able to create content that looks the same in the CMS and in the ELG
portal, a portion of the style configuration should be shared between them. A Google Material stylesheet file

European Language Grid
D3.4 Platform GUI (final release)

ELG 15/62

that is exported from the ELG portal and imported into the CMS ensures a common ground between these two

components.

Figure 8: Landing page in the CMS

There are three menus that are created in the CMS and displayed in the ELG portal. These are one main in the

header menu and two secondary menus in the footer – one on the left side, that mimics header menu and one

on the right side. There is one link (Contact us) on the right-side footer menu at the moment.

Each menu item can be configured individually by indicating target links of the menu item and various other

options (see Figure 9).

Figure 9: Menu link editing

There are additional parameters added to the menu item configuration, such as the ELG menu link type (see

Figure 10). This is added via the Drupal module Menu items extras and it allows to configure the type of link
and prepend the URL depending on this type. When the menu info is received in the frontend, there are pa-

rameters that mark the type of link (see Figure 10).

European Language Grid
D3.4 Platform GUI (final release)

ELG 16/62

Figure 10: Adding menu item

For example, CMS links are prepended with “/page/” and React links are prepended with “/catalogue/”.

Figure 11: Menu items received as JSON object through REST request

Access to various CMS actions is granted through a permission mechanism which can be assigned to different

roles (see Figure 12). For example, access to menu items is not restricted to logged-in users, so every page visi-

tor can see the menu.

European Language Grid
D3.4 Platform GUI (final release)

ELG 17/62

Figure 12: Menu permission mechanism

There is a special view for the news page. As it is seen in Figure 13 it gathers all the necessary information

about news posts and serves it in an HTTP request.

Figure 13: News page view

6 Catalogue UI

6.1 Technical description
For the implementation of the catalogue UI, we moved away from the traditional monolithic architecture

which dictates that backend and frontend are tightly connected. Instead, we follow the emerging micro-
frontend architecture (https://martinfowler.com/articles/micro-frontends.html) which separates the two. This

makes each codebase simpler and easier to maintain. Also, by decoupling the two concepts, the backend and

frontend developers’ team can take independent decisions, which makes the development process faster and
more versatile. For the development of the catalogue UI we use React (https://reactjs.org), a JavaScript library

for user interfaces.

European Language Grid
D3.4 Platform GUI (final release)

ELG 18/62

The catalogue UI is implemented as a Single Page Application (SPA). In this way, the end-user experiences in-

stant page updates instead of full page reloads. This is made possible due to AJAX requests, the Virtual Docu-

ment Object Model (VDOM) and the Reconciliation heuristic algorithm O(n) that the library uses to update the
DOM of the page. In order to deliver a robust and easy to maintain application, we exploit mature and widely

adopted technologies and libraries that are well documented and community supported.

The navigation from one page to the other is made with the concept of client-side routing. In the traditional

server-side routing approach, every time a user navigates to a new page the entire webpage is downloaded
from the server. In contrast to this, with client-side routing only the required data are downloaded, being pro-

cessed and displayed to the user, thus speeding up the process and providing seamless user experience. In ad-

dition, the URL that is displayed in the browser is changed manually by the routing library. For client-side rout-
ing, we use the react-router-dom (https://reacttraining.com/react-router/) library. For the authentication and

authorization part we use Keycloak’s JavaScript library (https://www.npmjs.com/package/keycloak-js). Follow-

ing the registration of our application to Keycloak, we are able to access user information (username, e-mail)
and acquire authentication tokens. This information feeds into policy-related actions; thus, we can assess if a

certain user is allowed to view restricted pages and if she should be granted access to specific functionalities,

like the try out GUIs, for example.

One of our primary concerns is to develop and deliver a catalogue that provides a pleasant experience to the
end-users independently of the browser or device they are using. In order to cover a wide range of browsers,

we transform the code into ECMAScript 5 code that is supported by many browser versions. We specifically

target a broad range of browsers based on global usage of production builds.

To accomplish these functionalities, we use the official create-react-app frontend build pipeline
(https://github.com/facebook/create-react-app), which, among others, utilizes webpack

(https://github.com/webpack/webpack) for the bundling process and Babel (https://github.com/babel/babel)

for the transpilation stage. By using this pipeline tool, we also get an optimized production build which is pro-
duced each time the GitLab Continuous Integration, Continuous Delivery, and Continuous Deployment (CI/CD)

is running. GitLab CI/CD is an iterative process that helps developers to build, test and deploy their applications

every time a code change is made. In our case, each time we commit a change, a new build is made that results
to a new Docker image that we deploy to Kubernetes. This Docker image contains an Apache server which

serves our production-ready application.

This production-ready application in the beginning was one large bundle file. All the code was merged into one

single file and this file was served to the clients. Whilst this is a great and acceptable approach for small appli-
cations, it is by no means ideal for larger applications. As the ELG catalogue pages started to grow, the size of

the bundle file also grew, making this approach inefficient. When users access the ELG catalogue pages they

had to wait until this file is fully downloaded and only then they could interact with the page.

One more drawback of this approach is that, because all of the code is merged into one single file, users have
to download portions of code that they will never make use of. For instance, unregistered users that do not

have access to dashboard pages and will never visit them still have to wait and download the related code even

though they will never be allowed to use it. This creates a bad user experience especially for users that are at

slow congested networks.

European Language Grid
D3.4 Platform GUI (final release)

ELG 19/62

In order to mitigate all of these issues we utilized the notion of code splitting technique (https://re-

actjs.org/docs/code-splitting.html). The idea behind this is that the code is split into smaller autonomous files

and the users get served only the files that are required to load the pages they are accessing. Thus, users that
navigate to the catalogue main page will have to download only the files that are needed to interact with this

page. Moreover, most browsers would cache these files so any subsequent visit to these pages would make use

of the cached version of the files.

In addition, in order to make the size of the transferred files (images, CSS style sheets, fonts, JavaScript files) as
small as possible we configured the Apache server to compress them. As a first option the Google's brotli

(https://github.com/google/brotli) lossless compression algorithm is used before the assets are sent to the cli-

ent over the network and as a fallback in case that the client doesn’t support it, the gzip compression format is

used.

The following chart (Figure 14) depicts the total amount of data in MB that the user of a mobile device will

have to use in order to load the ELG catalogue main page when code splitting is used and when it is not. The

chart depicts the transferred resources when they are compressed and when they are not. As we can see the

use of code splitting has a huge impact and dramatically improves the initial load size.

Figure 14: Data exchange with and without code splitting

In this release (Release 3, R3), we have introduced some changes to improve the indexing and discoverability of

the landing pages of the metadata records by search engines. Since the catalogue pages are implemented as
single page application with client-side rendering, the search engines need to be able to execute JavaScript in

order to render and index the pages6. Following recommendations for such cases, we have implemented the

following:

• Use the History API instead of fragments. In previous releases, the ELG catalogue URLs contained the
fragment ‘#’ symbol. In order to implement this, we had to change the URLs by removing the fragment

6 See for more information the Google’s developers guide with the relevant recommendations.

European Language Grid
D3.4 Platform GUI (final release)

ELG 20/62

(‘#’) from them. Also, we had to configure the server that serves the catalogue’s assets to be able to

handle each route request. Finally, in order to be backwards compatible, we configured the server to

redirect any old traffic to the new URLs. Thus, any user that accesses the old URL (e.g., https://live.eu-
ropean-language-grid.eu/catalogue/#/resource/service/tool/479) she will be redirected to the new one

(https://live.european-language-grid.eu/catalogue/tool-service/479).

• Embed structured data in our pages. This feature improves the discovery of our datasets by Google‘s
dedicated search engine for datasets platform. In order to implement this, we embedded in the page of

all items the appropriate JSON-LD (https://json-ld.org) metadata.

• Make sure that pages are linked together with hyperlinks and not buttons. Search engines, in order to
discover new pages, search for links, they are not designed to search and click buttons. Thus, we made

sure that navigation from one page to another is made through hyperlinks.

• Finally, we enriched catalogue pages with search engines optimization meta tags. We provide meta

tags for title, description, keywords and the canonical URL for each item page.

In order to track our performance in Google search results, we have utilized the Google search console. This is a

platform that enables owners to monitor their site's traffic, search performance and fix potential problems

with indexing. Figure 15 depicts the ranking metrics for the ELG catalogue’s pages at Google’s search results.

• "Average position" is the average position at Google search results for ELG
• "Average CTR" is the percentage of impressions that resulted in a click

• "Total impressions" refers to the number of times a user saw a link to ELG in search results

• "Total clicks" refers to the count of times a user clicked through to ELG.

Figure 15: Ranking metrics for ELG at Google search results

Finally, in order to have some baseline of quality measures, Figure 16 shows the performance scores of
Google’s Lighthouse (https://developers.google.com/web/tools/lighthouse/), an Open Source auditing tool for

performance and accessibility.

European Language Grid
D3.4 Platform GUI (final release)

ELG 21/62

Figure 16: Performance metrics for R3

6.2 Functionality and Web Interfaces
The catalogue UI is the one of the main access points through which users interact with resources hosted or

described in the ELG7. These include:

• LT services and applications that are fully integrated into the platform and that can be used through

trial UIs supplied by ELG and executed following ELG specifications,

• metadata records for data resources (e.g., corpora, datasets, lexica, terminologies, Machine Learning
models, computational grammars, etc.) that are available through ELG and/or other catalogues, and for

tools/services that are available in a downloadable form from the ELG platform or that are available

through other catalogues or websites,
• Metadata records for companies, research organisations, projects, etc. that are active in the LT domain

and can promote themselves through ELG.

The platform architecture (D2.2), and the design of the frontend take into account the needs and requirements

of the user groups described in the introduction.

The final release (R3) of the Catalogue UI builds upon, enhances and extends the functionalities and features of
the previous releases. In the initial release (R1, delivered in April 2020) the focus was on the consumer's side,

the interim release (R2, delivered in March 2021) incorporated functionalities for the provider and, to a lesser

degree, the ELG administrators and, finally, R3 enhances and improves previous functionalities, and introduces

new features for consumers.

Keeping in mind the different applications that should be integrated, the catalogue UI follows the overall de-

sign concept of the ELG frontend Angular 8 SPA application and corporate identity. Accordingly, it features the

same header and footer areas, icons, typeface and colour scheme to achieve a consistent look and feel.

The following subsections describe the main pages of the catalogue UI and their features.

7 REST APIs and the Python SDK that are also used for accessing ELG are described in Deliverable D2.6.

European Language Grid
D3.4 Platform GUI (final release)

ELG 22/62

6.2.1 Catalogue Browse and Search Page

The catalogue main page (Figure 17) displays minimum information, allowing users coming from the ELG main

website to get a clear picture of the contents of the ELG platform. The top menu items are inherited from the

main ELG website and redirect the user to the corresponding pages.

The structure of the page follows the standard way of presenting resources in other catalogues, enabling users

to quickly familiarize themselves with ELG.

The main section of the page lists the catalogue contents sorted by resource type and in alphabetical order.

Users can also select to sort them by update date in ascending or descending order by clicking on the sorting

button at the top of the catalogue.

The information displayed for each item is carefully selected to serve as a preview of the full description and to

help users decide whether they want to explore the item further. Following the main findings of the user sur-

vey (see Deliverable D3.1), this information includes: the title of the resource (which is a link to the landing
page of the item), the version number, an excerpt from its description, the licence(s) under which the resource

is available, the language(s) of the resource or supported by the tool/service and keywords. The item type is

displayed in the form of an icon next to the title of the item. On the right side of each snippet, further infor-
mation is provided: mainly statistical information (views for all records, downloads for ELG-hosted data and

times used for ELG-compatible services), and appropriate marks for ELG-hosted data and ELG-compatible ser-

vices.

Figure 17. List view of catalogue contents

European Language Grid
D3.4 Platform GUI (final release)

ELG 23/62

Users can browse through the catalogue or search for items in two ways: (1) using the bar at the top of the cat-

alogue page for free text search, and (2) using the filters (on the left-hand side of the page) to narrow down

search results using specific criteria that give a faceted view on the catalogue. The search categories both for
free text and facets have been carefully selected to reflect user preferences from the initial survey and follow-

up interactions.

An effort to keep the number of facets restricted so as not to overwhelm the users with too much information

has been made. The facets include: resource type and related entity type, language, intended LT application,
media type, function (for LT services), licence, condition of use, and source of the item. A facet for selecting

ELG integrated services and ELG hosted data is also at the user's disposal.

Given the list of facets, accordions (expansion panels) are used to collapse them; this allows us to make all fac-

ets visible at once. Facets with long lists of values (e.g. languages, service functions, licences) are endowed with
a simple string-based lookup functionality to help users easily find the values they seek for. In addition, a sec-

ond level ("subfacets") of display is used for the "language" facet (Figure 18), bringing the EU official languages

at the top of the facet, since they are of most interest to the ELG users.

Figure 18: Facet for language

6.2.2 Landing page for items
Once users have spotted an item they find interesting, they can click on its title and be directed to a page that

describes it in detail. We developed landing pages for each item category (i.e., LT services, data resources and

their subtypes, organizations, projects, etc.) included in the catalogue. They allow users to get detailed infor-
mation on an item, preview its contents or functionality, and, finally, obtain and use it for their purposes. Fig-

ure 19 shows the landing page for a corpus (which is available at https://live.european-language-grid.eu/cata-

logue/corpus/8057).

European Language Grid
D3.4 Platform GUI (final release)

ELG 24/62

Figure 19: Landing page for a corpus

Even though the landing pages contain information that differ for each category, our main efforts aim to pro-

vide a consistent visual look and feel. Landing pages share a common layout that consists of a header, a right-

hand sidebar, a main content area and a bottom content region, described in the following subsections. Each
page uses the same principles customized for the different categories of content (i.e., Project, Tool/Service, Or-

ganization, Corpus etc.). The pages apply the general principles of content organization such as grouping similar

items together, numbering items, and using headings and prompt text.

The information displayed on the landing page of each item comes from the respective metadata record. Tak-
ing into consideration the specificities and richness of the metadata schema (D2.3), but also user-friendliness,

we opted for splitting the information along specific sections of the page and organizing elements into different

areas. Tabs are also used for splitting information into smaller views and enabling users to navigate through the
item features: view its general information, try out the service, view information on how it is distributed and

European Language Grid
D3.4 Platform GUI (final release)

ELG 25/62

obtain the item (run the service or download the data resource), etc. We also use accordions to group similar

information and keep the landing page at a reasonable length.

The main challenge in designing landing pages for the catalogue resources is that the metadata schema in-

cludes a lot of elements that take values from controlled vocabularies, rather than free-text items. This poses a
problem since the accumulation of many elements and values together can become tiring to the eye. The pro-

posed design displays the keys (element labels) in small font size and places more emphasis on the values,

which makes them visually more prominent and hence better identified. In addition, the positioning of the ele-

ments on the page is carefully thought through to draw users’ attention to the most important information.

6.2.2.1 Header

The header area displays the main information for each item. Its purpose is to introduce the user to the current

page. The left header region is reserved for the logo of the item (Figure 20); if none is provided by the

metadata creator, then the default icon associated with its category is displayed (Figure 21).

Figure 20: Header for an organization with the organization logo

Figure 21: Header for an organization with default icon

6.2.2.2 Main Content Area

The main region contains the information that is of most interest to users. Figure 22 shows the main region for

the item displayed on Figure 22.

The top part of this region is devoted to the "description", a human readable summary of the item's main char-
acteristics, as provided by the metadata creator. Since we do not have control over free text items, like, for in-

stance, the description of a resource, we ensure readability by trimming texts to a maximum of five lines of

text. A "Read more" button expands the text to the remaining lines. In addition, in this release, we have started
supporting a subset of HTML tags8 for this metadata element; users can add the HTML tags in the element in

the XML metadata record they upload in the platform or use the rich text editor that has been introduced for

this reason in the metadata editor. The use of HTML tags in the description text makes the text easier to read.

The description is followed by the "classification section" in which we group information that classifies each

item according to different parameters, such as keywords, domain, relevant LT area, resource subtype, etc.

8 The subset has been selected so as to avoid security issues.

European Language Grid
D3.4 Platform GUI (final release)

ELG 26/62

The bottom section of the main content region is used for the technical metadata and is different for each item

type. For corpora, for instance, this page includes information on the language(s) and contents grouped in tabs

corresponding to the corpus parts.

Figure 22: Main area for a corpus

For Projects and Organizations, the main content area is similar. Still, fine tuning to accommodate the different

metadata elements was made. For instance, while the description and classification sections follow the same
principles, the Organization page includes a section for the link to the parent organization, in the case of divi-

sions (Figure 23 showing the organization page at https://live.european-language-grid.eu/catalogue/organiza-

tion/385).

European Language Grid
D3.4 Platform GUI (final release)

ELG 27/62

Figure 23: Landing page for an organization

Other categories, on the other hand, include more information and thus additional layouts and styles. One ex-

ample is the category of Tool/Services. Figure 24 displays the landing page of a Tool/Service, which is available
at https://live.european-language-grid.eu/catalogue/tool-service/17408. Each Tool/Service is described accord-

ing to its specifications, i.e., a tool expects an input, performs an operation on this input and results in the ex-

pected output. In order to visually display this procedure, we split the area into three different columns.

European Language Grid
D3.4 Platform GUI (final release)

ELG 28/62

Figure 24:Landing page for a tool/service

In a similar way, the landing page for a Project (Figure 25, available at https://live.european-language-

grid.eu/catalogue/project/395) also engages users with areas that are visually the same but alters the main

content area focusing on a project’s relevant content.

European Language Grid
D3.4 Platform GUI (final release)

ELG 29/62

Figure 25: Landing page for a project

6.2.2.3 Right sidebar

This area was created in order to show information deemed important for each category while keeping the
page short enough so that users do not have to scroll down to view all the information. For instance, for re-

sources, this section includes information on funding projects, contact points where users can ask for more in-

formation, links to all versions of the item, etc. (see Figure 26 with the right sidebar of the resource on Figure

20). A grey background colour distinguishes the sidebar area from the rest of the content.

European Language Grid
D3.4 Platform GUI (final release)

ELG 30/62

Figure 26: Sidebar for a resource

6.2.2.4 Bottom Content
The bottom content area brings together information types that are common to all resource types and consid-

ered important enough to show on the main tab. Such information includes documents, such as user manuals,

publications, etc. where users can learn how to use the resource, have access to information on the resource
creator and creation details, evaluation of the resource, etc. Figure 27 shows the bottom area of the resource

on Figure 19.

Figure 27: Bottom content area for resources

European Language Grid
D3.4 Platform GUI (final release)

ELG 31/62

Finally, the landing page of items for logged-in providers and administrators (Figure 28) includes two additional

features:

• a dedicated area for "Actions" which allows them to manage the metadata records;

• an area showing a bar with the publication status of the item, in accordance with the ELG publication

lifecycle (for more information, see Deliverable D2.4).

Figure 28: Publication status bar and Actions areas

6.2.2.5 Tabs

Tabs are used to separate information into appropriate groups and draw users’ attention to particular details.
All categories include a default tab "Overview" which contains the main descriptive and technical metadata.

Additional tabs are used depending on the category.

All resources include a tab ("Download" or "Download/Run") with information on their distributable form(s),

i.e., the licensing conditions under which a resource may be acquired, technical details (such as format) of the

physical files. This tab includes the button for downloading a data resource, if hosted in ELG.

ELG-compatible services include two more tabs, as shown on Figure 29 (top part of the tool on Figure 24):

• a "Test/Try out" Tab, which contains the trial UI implemented by ELG so that users can test the service

and which is specific to broad categories, namely, Information Extraction (Figure 30), Machine Transla-

tion, Speech Synthesis, Automatic Speech Recognition;
• the "Code samples" tab, which allows end-users with technical knowledge to test a tool in command

mode or through the Python SDK (for ORE information, see Deliverable D2.4).

Figure 29: Tabs for ELG-compatible services

European Language Grid
D3.4 Platform GUI (final release)

ELG 32/62

Figure 30: Test/Try out tab for a sample Information Extraction service

6.2.3 Dashboard

To support users in accessing and managing the catalogue items and performing the actions that are allowed

depending on their user role, we make use of a dashboard, which in ELG we call "grid" (Figure 31). The grid is

accessible to all logged-in users through the menu at the top of the ELG page.

Figure 31: Provider's grid

The grid is the central place through which all users have access to various actions and resources, depending on

their role. Although the look and feel is the same across user roles, the menu items, pages and actions differ

depending on the user role. For the sake of convenience, in the following subsections, we use the terms "con-
sumer's grid", "provider's grid", and "validator's grid" to refer to the pages offered for the respective user role,

although users with multiple roles have access to all functionalities through a single grid9.

9 It should be noted that administrators perform all monitoring actions through pages created with Django. Given their familiarity with
technical environments, the creation of dedicated pages and forms was considered unnecessary for the project duration.

European Language Grid
D3.4 Platform GUI (final release)

ELG 33/62

The main page of the grid (Figure 31) is made up of cards offering an overview of the user's data, and quick ac-

cess to the main functionalities of their user role.

In addition, they have access to dedicated catalogue pages that serve as a focused version of the catalogue,

filtering records according to each user’s role (e.g., for providers, a list of the items they have created, for vali-
dators, a list of the items they have been assigned for validation). Figure 32 shows the relevant page for provid-

ers called "my items". This type of page implements browse and search functionalities like the main catalogue

page, i.e.

• browse through all the items
• sort items by name or date of update

• search for specific items using the free text bar (e.g., search for a language processing service, a corpus,

a project or an organization by its name; or search for all entries that mention "machine translation" or
"English")

• filter the catalogue or refine the search results through the facets on the left side bar, which are cus-

tomized depending on the user role

• perform actions on single or multiple items.

Figure 32: My items page (for providers)

To do this, they simply click on "Actions" of each record and they are presented with a choice of options (Figure

32). Single actions are straightforward from this interface, but one of the major benefits of this page is that a

user can perform bulk actions on selected items. Bulk actions are performed by simply clicking the checkboxes
on the left of each element, and then a dropdown menu appears on the top that lists all the allowed actions for

the selected items (Figure 33).

European Language Grid
D3.4 Platform GUI (final release)

ELG 34/62

Figure 33: Bulk actions on my items

In the following subsections, we present the functionalities offered through the ELG platform for each user

role.

6.2.3.1 Consumer's grid and functionalities

Through the grid, registered consumers have access to the following functionalities:

• Information on the remaining quotas they can use for calling services, in accordance with the ELG poli-

cies that restrict the daily usage of services to a specific number of requests/calls and size (in bytes)10.
• View through their dedicated catalogue pages

• "my downloads": the list of resources they have previously downloaded, with accompanying infor-

mation on the date and the licence selected for the download;
• "my usage": the list of the services they have used before, with information on the status of the call,

the call type, used bytes, start time and duration of the call.

Through this page, consumers can download again a resource with the same licence.

6.2.3.2 Provider's grid and functionalities

Providers have access to all the metadata records they have created, through the "my items" page; they have
also access to the functionalities that will allow them to create new items, i.e. the upload of metadata records,

and the interactive editor.

6.2.3.2.1 Accessing the interactive editor

Users can create a metadata record by accessing the main editor page through the provider's grid and selecting
the type of the item they are interested in (Figure 34). Depending on their selection, they will get forwarded to

the corresponding editor page where they can fill the metadata information for the item they want to register.

10 For more information, see Deliverable D2.6.

European Language Grid
D3.4 Platform GUI (final release)

ELG 35/62

Figure 34: Selection of item type for the editor

6.2.3.2.2 Interactive editor

For the ELG metadata editor, we have designed and implemented forms that enable users to describe their

items in compliance with the ELG metadata schema. Since the schema is rather complex, we attempt to meet
the needs of our users by hiding this complexity and present them with a full-fledged GUI. As a result, we re-

frain from using long forms that could overwhelm users; instead, we have adopted a more interactive design

based on the organization of the elements along a natural workflow split across multiple steps. The steps are
not linear, meaning that users can proceed in any step, revisit, or revise previous steps at any time. For exam-

ple, Figure 35 shows the form for creating the metadata record for a corpus.

European Language Grid
D3.4 Platform GUI (final release)

ELG 36/62

Figure 35: Editor form for corpus

By grouping and organizing the elements, we achieve the following goals:

• Focus. By breaking up the workflow into multiple steps, users can focus on one topic at a time. They are

thus potentially less distracted and overwhelmed by other screen elements competing for their atten-
tion. We obviously modularized the application in ways that make sense to users and minimize the

need to refer to information contained in other areas.

• In-context help. As users have fewer items on the screen, we can clearly explain each one. For this, we
supplement buttons and menus with text and examples that illustrate their proper use (utilizing place-

holders in form elements, tooltips, help examples).

• Avoiding scrunched screen elements. A second advantage of having fewer items on each screen is that
our layout is less burdened by space constraints. For example, we avoid menu drop downs and long

scrolling lists and instead, we present lists of selectable autocomplete items (where only related items

are visible simultaneously). This makes selection faster and less error prone.
• Flexible workflow. In our application, we let users work on different parts of the metadata schema in a

sequence that makes sense to them. We also let them refer to supporting data sources in this process.

We achieve this by letting users temporarily save their progress (as a "Draft") so they can come back at

any time to continue the editing workflow.

Each time a user creates a new item as a first step, they are required to fill in its title. To save users the time

and effort required to find out if the item is already created by another user, the frontend application performs

a lookup (using the appropriate backend endpoints) and returns matching items (Figure 36).

European Language Grid
D3.4 Platform GUI (final release)

ELG 37/62

Figure 36: Search for existing items

This initial step serves the following purposes:

• Users are informed of existing matching items and their status (i.e., whether it's published or in the
process of being edited)

• For items that are published or in process of being edited by other users, the record is locked (non ed-

itable)
• If the matching item is one that the user has initiated at a previous visit, the "Edit" button is visible and

the user can proceed to editing it.

After the initial lookup step, the user will be presented with the form for the respective item type. The editor

interface is meant to be used by experts, as well as users with less technical knowledge, so our goal is to keep it
as simple as possible with straightforward steps so that we can guide each user to filling out the input ele-

ments. In order to accomplish the aforementioned goals, we make use of several backend endpoints.

More precisely all the required information such as required fields, help texts and labels are sent to the

frontend from the catalogue backend as json responses. All the required fields are displayed with a star near
their label. The placeholders are displayed when the user focuses on the elements and the help texts are al-

ways visible at the bottom or at the top of each field (Figure 37).

Figure 37: View of a multilingual element with help tips and examples

Depending on the data type of the elements, different features are used.

European Language Grid
D3.4 Platform GUI (final release)

ELG 38/62

A rich editor is included for the "description" metadata element, which allows users to enter paragraphs, links,

bullets, and other text formatting techniques in order to make long texts more readable in the final published

metadata record.

For the multilingual elements users are forced to fill in the value for English and then they can add the same
element for another language by pressing a + button next to the field and selecting the language from the

dropdown list (Figure 38).

Figure 38: Selecting language for a multilingual element

Other complex elements remain hidden (Figure 39) until the user decides to fill them.

Figure 39: Hidden elements

After a user presses the "Fill in" button, she can add the appropriate values (Figure 40). By clicking "remove",

the elements of this group will be emptied.

Figure 40: Opening a hidden element in order to add metadata

Moreover, complex editor elements make use of backend lookup endpoints. These endpoints respond back

with a list of possible suggestions that the users can choose from (Figure 41). Following this approach, the users

European Language Grid
D3.4 Platform GUI (final release)

ELG 39/62

have the option of selecting an existing value instead of filling in all the required fields from scratch making the

whole process easier and faster.

Figure 41: Lookup field

Finally, when a group of elements gets rather long, we deploy accordions (Figure 42), not only to prevent scroll-

ing as much as possible, but to support the creation flow and allow lightweight editing of an element. For ex-
ample, for each Corpus users can describe multiple distributions. At any time, users can click the "Add" button

and a new Distribution group will be created in a new area. Of course, the individual groups can also be re-

moved.

European Language Grid
D3.4 Platform GUI (final release)

ELG 40/62

Figure 42: Use of accordion for long elements

Before the form is submitted to the backend, the client makes a throughout validation using the yup validation

library (https://github.com/jquense/yup). By doing this, we make sure that all the required fields are filled in

and that the users' input meets the constraints imposed by the schema. In case of errors, appropriate mes-
sages are displayed describing the error and the location where this error occurred (Figure 43). By clicking on

the validation error, users are redirected to the source location and they can correct it.

European Language Grid
D3.4 Platform GUI (final release)

ELG 41/62

Figure 43: Validation error message

6.2.3.2.3 Uploading metadata records
As an alternative to using the interactive editor, providers can create metadata records in XML format compli-

ant with the ELG metadata schema and upload them to the ELG platform. Before uploading XML files, users can

validate them against an XML validator. Both functionalities can be accessed through the grid, as depicted in

Figure 44.

European Language Grid
D3.4 Platform GUI (final release)

ELG 42/62

Figure 44: Upload and Validate functionalities

Through interactive processes, users can upload single or batch metadata files directly from their computer

(Figure 45) and receive success or failure messages.

Figure 45: Upload metadata records

When the metadata files have been uploaded, users can view and further edit the records with the interactive

editor, and manage them through the "my items" page described in the following subsection.

6.2.3.2.4 My pages and actions for providers
Users can manage the metadata records they have created through a dedicated page, and, in accordance with

their user rights, perform the following actions:

• edit or update a metadata record

European Language Grid
D3.4 Platform GUI (final release)

ELG 43/62

• submit it for publication

• delete a metadata record

• upload content files to a metadata record, and

• replace the content files that have been uploaded.

The allowable actions depend also on which state of the ELG publication lifecycle the metadata record is in. The

following table shows the actions which can be performed on an item in the various phases of the publication

lifecycle.

Status Edit Submit for pub-

lication

Delete Upload content Replace content

Draft Y N Y Y Y

Syntactically

valid

Y Y Y Y Y

Submitted for

publication

N n/a N N N

Published N n/a N N N

Table 1: Actions allowed on metadata records by publication status

There are currently two access modes where users can manage items: the "My items" page, from where they

can select one or multiple items, and the landing page of each item.

Since the application is frequently used, we provide users with an area for performing common actions. For
example, a user has created a Draft metadata record, and would like to continue editing it. Or a user would like

to submit an item for publication. Each user is provided with one-click access to her personal "My items" page

(Figure 46) where she can perform single or bulk actions on the items she has created in the past.

European Language Grid
D3.4 Platform GUI (final release)

ELG 44/62

Figure 46: My items page

At the "My items" page, providers can perform actions on a single item or select multiple items and perform

bulk actions, as described in Section 6.2.3. The same Actions can also be performed on the landing page of an

item (Figure 47).

Figure 47: Actions on the landing page of a record

European Language Grid
D3.4 Platform GUI (final release)

ELG 45/62

R3 has introduced a new functionality to facilitate the addition of versions for existing items, given that they

share similar metadata. Users can create new versions of items they have already registered in the ELG cata-

logue through an action on the existing record (Figure 48). This new action will create a copy of the existing rec-
ord with all the metadata that contained in the old version, allowing the user at the same time to edit the infor-

mation required for the new version and automatically create a relation with the previous version.

Figure 48: Action for creating new versions

After the user selects to create a new version, she is asked for the version number in the field that appears and,

optionally, a version date (Figure 49). For organizations and projects, she will be prompted to add a new name.

In addition, for tools/services, she will be asked whether it’s an ELG-compatible service.

Figure 49: Dialogue for the creation of a new version

When the new item is created, the user is redirected to its landing page, and can then proceed to edit it and

submit for publication, following the publication lifecycle for all LRTs. If the user had uploaded content files for

the previous version, these are not copied and the user can upload new files.

Finally, on the landing page of each version, links to previous/new versions are also clearly marked (Figure 50).

European Language Grid
D3.4 Platform GUI (final release)

ELG 46/62

Figure 50: Landing page for a resource with multiple versions

6.2.3.3 Validator's grid and functionalities
Validators have access to all the items they have been assigned to them through a dedicated catalogue page

called "My validation tasks" (or, in short, "my validations"). Through the landing page of each item, they gain

access to dedicated forms where they can perform the metadata, technical and legal validation of records as

well as, for ELG-compatible services, the service registration.

The "My validations" page (Figure 51) is accessible only to technical, metadata and legal validators. It imple-

ments browse and search functionalities like the main catalogue page, making it easier for validators to access

their tasks, have a quick overview of the records being validated, while overall the purpose is to save valuable

time from the validators and help them perform their tasks efficiently.

The following table shows the validation operations foreseen for each item type / source of metadata.

Type of items Validation types

Metadata Technical Legal

Harvested metadata N/A N/A N/A

Metadata only records Yes N/A N/A

ELG compatible services Yes Yes Yes

LRTs uploaded (hosted) in ELG Yes Yes Yes

Table 2: Validation types by item type

As seen in Figure 51, each item occupies a row separated in three columns:

• the first one provides some basic information on the item (name, version, item type, submission date),
• the second column presents the names of the curator and validators, and

• the third column shows its status in the publication lifecycle and the validation status (i.e. whether it

has been validated and approved or rejected).

In addition, if the item has been validated, there is a box with the validator notes (for internal purposes only)

and, if rejected, the review comments.

European Language Grid
D3.4 Platform GUI (final release)

ELG 47/62

Figure 51: My validation tasks

When a validator clicks on an item, she is redirected to its landing page where she is able to perform the valida-

tion tasks through the appropriate form (Figure 52). The allowed actions depend on each validator's role.

Figure 52: Actions for metadata validation

For the metadata validation, a validator is asked to check whether the values of various elements are included

for the item and whether their values match the description of the service.

European Language Grid
D3.4 Platform GUI (final release)

ELG 48/62

Figure 53: Validation form for technical validators

For ELG-compatible services and ELG-hosted data, technical and metadata validation is performed by the same

individual using the same form (see Figure 53). If the validators are satisfied, approval of both types of valida-
tion is made and the Submit button should be pressed. If not, then the option to Reject the Technical validation

and/or the Metadata validation (depending on the source of the issue) is allowed. This will generate a new field

where the validator can write the recommendations they would like to share with the metadata creator. They

can also add comments in the "Validator notes" field which will be visible only to her and other validators.

For ELG-compatible services, the technical/metadata validator performs also the service registration through a

dedicated form (Figure 54) which is similar to the validation forms. The service registration procedure is de-

scribed in detail in D2.6.

Figure 54: Service registration form
Authentication Solution

European Language Grid
D3.4 Platform GUI (final release)

ELG 49/62

6.3 Technical Description
Keycloak implementation have not changed much since the initial release. See the technical description in De-

liverable 3.2.

Since Release 1 the following main extensions have been made:

1. Custom themes were added for login, account and emails;
2. We developed a custom module for synchronization with the Catalogue backend. This is described in

Deliverable D2.5;

3. Global roles were introduced, migrating from application-specific ones.

6.4 Authentication GUI customization
In order to customize Keycloak end user interface elements, the Keycloak provides custom theme creation. As

recommended in the Keycloak documentation, we extended the built-in theme, by adding a new themes and

setting this built-in theme as a base. We added 3 new themes:

1. Login theme – theme for different login screens, password recovery, account linking, account registra-
tion, accepting terms, offline login and similar.

2. Account theme – theme for administering existing users’ accounts, password change, session lists.

3. Email theme – for adjusting email texts and email designs sent by the Keycloak system.

Custom themes are built and packed into a Docker image and published. When Keycloak initializes, it down-
loads the image with custom themes and maps to the Keycloak filesystem. Custom themes are set in the top

ELG realm level, so all design changes apply to all components of the system – central portal, catalogue, python

clients, etc.

Customized login screen (Figure 55): the ELG platform still allows registration with locally administered ac-
counts only, however, if needed, logins can also be performed with external identity providers e.g. Google. In

the case that the user is not yet registered, they can go to the registration page or reset the password if they

have forgotten it.

European Language Grid
D3.4 Platform GUI (final release)

ELG 50/62

Figure 55: Login form

Registration form (Figure 56): a self-registration form is now available in the live environment. The default user
registration data model was extended and new fields added. During registration, not all fields are visible to the

end-user; some fields will be visible later in the account editing form.

European Language Grid
D3.4 Platform GUI (final release)

ELG 51/62

Figure 56: New user registration form

Password recovery form (Figure 57): in the case that the user forgets their credentials, they can restore their
password by providing the e-mail address that was registered during sign-up. Then, the user will receive an e-

mail from Keycloak to reset the password. This email message is also adjusted to fit the ELG design guidelines.

Figure 57: Password recovery form

European Language Grid
D3.4 Platform GUI (final release)

ELG 52/62

Password change form was adjusted according to the design guidelines and more text messages were added.

Figure 58: Styled form for password change

In the R3 version of the ELG platform, the user account editing form is enabled. Here, the user can edit all data

categories defined by the extended user data model, the user can also set his profile image.

European Language Grid
D3.4 Platform GUI (final release)

ELG 53/62

Figure 59: User account edit form

Once a user has submitted their data, it is saved in the Keycloak database as attributes. Later, these attributes

are mapped to data categories in the authorization token, and thus data included there are to be used in every

platform’s component in a decentralized manner. The Keycloak database is hosted by ELG infrastructure.

European Language Grid
D3.4 Platform GUI (final release)

ELG 54/62

Figure 60: User submitted attributes in Keycloak Management Console

7 Billing Solution

Service and data commercialization is very important for every sustainable solution thus requirements must be
analysed from many different aspects – service and data providers, service and data consumers, EU and na-

tional laws, platform and existing workflow restrictions. As well, to ensure the most up-to-date user experience

with purchase and automatic subscription process, it involves many implementation details such as pricing and

conformance with legislation. The following options were considered:

• Create the functionality from scratch.

• Take an open-source solution, adjust and run it on ELG infrastructure.

• Choose an existing online solution to integrate with ELG.

After investigating the pros and cons, an existing online solution was chosen to proceed with. Creating func-
tionality from scratch needed too much effort. After trying out some open-source solutions and estimating the

amount of the work needed to create a user-friendly solution that follows EU and national laws, we decided to

go with an existing online billing solution.

Following the decision to select an online solution we tried out selected online solutions and finally choose
Chargebee11 for integration with ELG. After the negotiations with Chargebee, we migrated our account to the

EU data centre and got two environments – a test environment and the live environment. When the platform

will start to generate revenue, we will need to move to a subscription plan and real payment providers like Pay-

pal, credit-cards and debit payments.

7.1 Requirement analysis and market research
From the commercialization perspective we listed the following products:

• One time purchase without ELG computing (execution in ELG infrastructure)

• Recurring without ELG Computing

11 https://www.chargebee.com

European Language Grid
D3.4 Platform GUI (final release)

ELG 55/62

• One time purchase prepaid with ELG computing

• Recurring with ELG computing, prepaid

It is important for ELG to support all billing features that conform to applicable laws and regulations, to ensure

that the paying customer is happy and to provide all back-office operations. The following is a list of key fea-

tures of the billing software that should be included in the ELG billing module:

• Pricing

• Reporting & Analytics

• Billing and Invoicing
• Usage-based-Billing

• Trial Analytics

• Subscription Management
• Fraud Prevention

• Customer Data management

• Prepaid/Post-paid Billing
• Payment Processing

• Costumer Self-service

• Recurring, metered (price according the amount used), with ELG computing, after-paid

Figure 61: Price Calculation Components

Pricing for different services and products is quite complex and is dependent on various parameters. At first,

the resource or service provider can have their expectation of the value the Provider wants to receive for its

services or data. In case the service is hosted in the ELG environment, hosting and running expenses for that
service in ELG cloud must be covered. Some services have only proxies in the ELG environment and the actual

service load is transferred outside the ELG infrastructure while other services fully exploit the ELG environment.

The final price must also include ELG’s administrative costs and some margin, if planned. Finally, VAT must be
applied in certain situations according to the regulations and national laws. VAT rates differ by the purchaser’s

home country.

The pricing must be quite flexible to support a very wide range of ELG products, price calculation options that

must be taken in account are:

European Language Grid
D3.4 Platform GUI (final release)

ELG 56/62

• Several price calculation parameters:

• Number of users, number of clients, number of employees

• By features – languages, datasets, methods etc
• Amount-based:

• Time based – hours of processing

• Text based – words/symbols/tokens etc.
• Session-based – e.g., count of chatbot session

• Time-base subscriptions – unlimited amount

• Hybrid – amount-based plus time-based subscription, one-time price*amount based, etc.
• One-time purchases – for example, ad-hock service, consultation, integration

• Bundling – per-product-bundle, service-pack pay, workflows, language-packs, service + data model, etc.

The billing module also requires to provide great user experience and flexibility with an extensive range of

functions:

• Usability and user-friendly product management
• GUI customization

• Upselling triggers – have done this, you might want to buy this?

• Pending changes in plans (i.e., plans that change with next billing cycle)
• Multi-lingual support (customer portal, e-mail templates, other customer facing GUIs)

• Mobile friendly user interface

• Reporting and Business Intelligence

Compliance with different legal and tax jurisdictions is mandatory for the billing module. It includes verifica-
tion of clients (VAT number must be verified in EU official VAT databases) reverse charge, several VAT rates

must be applied, different client types must be supported (company vs. private person). The module must be

compliant with the GDPR and other EU regulations, must ensure payment cancellation (refunds), handle pend-

ing cancelations and bad debit invoice cancellation.

After researching the current status in the billing platform market, we realized that there are hundreds of com-

mercial platforms, less variety for open source, but still quite many. Usually, these were complicated systems

as different payment and billing options complicates them. Based on the features they provide and existing re-

views from other users, we created a shortlist of platforms to try out. We investigated the following solutions:

• Commercial Platforms – Salesforce12, Chargebee, Zuora13, Zoho14, The Younium Subscription Stack15

12 https://www.salesforce.com
13 https://www.zuora.com
14 https://www.zoho.com
15 https://www.younium.com

European Language Grid
D3.4 Platform GUI (final release)

ELG 57/62

• Open source – Kill bill16, Invoice Plane17, Box billing18, SolidInvoice19, Invoice Neko20, Bamboo Invoice21,

jBilling22, Logic Invoice23

7.2 Billing Functionality Overview
Chargebee has great functionality and it is available at the Chargebee live documentation site24. The following

functionality is essential for the ELG and was a driving factor for selecting Chargebee as the billing solution:

• Product Families and Plans – possibility to group different plans by product category is very useful as

ELG have many services and datasets.

• Pricing – monthly price and annual price, one time price, amount-based price, package-based price.
• Checkout pages and customer self-service portal provides already built GUI and functionality to pay for

service and later manage subscriptions, consents, do additional purchases.

• Emails – email functionality for payment dunning, onboarding, reminding and informing about actions
done is very essential functionality and Charge provides easy and robust way of handling various email

sending mechanisms.

• Invoices – after successful payment, client receives email with invoice that complies to all EU and na-
tional laws.

• Online back-office functionality – user friendly and rich functionality GUIs for subscription, customer

management
• Reporting – provides various report generation engines and visually representation of them, as well

provides data export functionality

• Payment gateways – Chargebee has prebuilt integration with most popular payment providers, for ex-

ample, Stripe, Paypal can be attached to this billing platform very easy.

Figure 62: Chargebee subscription management window

16 https://killbill.io
17 https://www.invoiceplane.com
18 https://www.boxbilling.com
19 https://solidinvoice.co
20 https://invoiceneko.com
21 https://www.bambooinvoice.net
22 https://www.jbilling.com
23 https://www.logicinvoice.com
24 https://www.chargebee.com/docs/2.0/index.html

European Language Grid
D3.4 Platform GUI (final release)

ELG 58/62

7.3 Billing Configuration
The following configuration was necessary to set up the Chargebee tenant ready for ELG platform integration:

• Product families and plans, prices – created some product families (ASR services, TTS services, MT ser-

vices, Dataset) and configured initial product for demo purposes – one service and one data set.
• Branding – colours, logos, layout were specified to ensure ELG common style look and feel. Branding

was done for Email, Invoices, checkout screens and self-service portal.

• Business profile – about organization
• Product catalogue settings

• Billing configuration

• Subscription settings
• Payment gateways – currently added test payment gateway

• Chargeback settings

• Currencies
• Taxes – added configuration for EU Region

• Consent management – settings for obtaining customer’s consents before processing data

• Personal data – settings for handling the client’s personal data
• Languages – currently English was enabled, but it is possible to enable more languages from the list or

translate to any.

• Email notifications – Chargebee supports more than 70 various events when to send email to customer.
We have enabled and configured 20 various email templates.

• Invoicing options

• Configuration of check-out and self-service portals functionality
• Dunning settings for online payments

• Webhooks for integration with ELG

Figure 63: Sample ELG branded invoice generated by Chargebee

European Language Grid
D3.4 Platform GUI (final release)

ELG 59/62

Figure 64: Branded sample test email sent by Chargebee

7.4 Implemented Billing Solution
In ELG release 3 we have developed an example scenario for a service billing cycle for selected services and da-

tasets. The Chargebee site is fully configured thus it can go live at any time. For demo scenario we created spe-

cific user role, and for users having this specific role a new function appears at service/dataset details window.
After clicking the “subscribe” link, a new modal window appears that loads the GUI from the Chargebee site.

That is the checkout page, where user can go and fill their information step-by-step.

European Language Grid
D3.4 Platform GUI (final release)

ELG 60/62

Figure 65: Account information at Billing checkout scenario

The User must fill in information about themselves, later they will be able to directly sign-in into the Chargebee

self-service portal using this one-time password sent to the email address submitted here.

Figure 66: Billing address at Billing checkout scenario

The billing address must be filled in, this is an important step because this information will affect the VAT rate.

European Language Grid
D3.4 Platform GUI (final release)

ELG 61/62

Figure 67: Payment details at Billing checkout scenario

Payment details must be entered in the step visible. For test purposes we configured the test payment gateway

that lets one select to prefill a form date with fake credit card data during the checkout.

Figure 68: Summary at Billing checkout scenario

The very last step is the overview, where the end user has a last opportunity to change or edit any entered in-

formation before getting charged. In case there is a trial period set for this plan, then the actual charge will

European Language Grid
D3.4 Platform GUI (final release)

ELG 62/62

happen immediately after the trial period. Prior to each recurring payment the user is warned by email, that

they will be charged with a link to the self-service portal that provides options to change or cancel the subscrip-

tion.

Figure 69: Email message warning about the next payment

8 Conclusion

In the deliverable D3.4 we report the progress of development of the ELG platform GUI. We present an over-
view of the overall frontend architecture and provide a technical description and implementation details for

the solutions designed for the central portal, CMS, the catalogue UI, the implementation of UX and the authen-

tication solution, and the billing module.

