

Authors:

Penny Labropoulou (ILSP), Dimitris Galanis (ILSP), Miltos Deligiannis (ILSP),
Katerina Gkirtzou (ILSP), Leon Voukoutis (ILSP), Athanasia Kolovou (ILSP), Di-
mitris Gkoumas (ILSP), Juli Bakagianni (ILSP), Stelios Piperidis (ILSP), Florian
Kintzel (DFKI), Remi Calizzano (DFKI), Georg Rehm (DFKI), Ian Roberts
(USFD), Kalina Bontcheva (USFD), Andis Lagzdiņš (TILDE), Aivars Bērziņš
(TILDE)

Dissemination Level: Public

Date: 28-02-2022

D2.6
ELG platform (final
release)

European Language Grid
D2.6 ELG platform (final release)

ELG 2/52

About this document
Project ELG – European Language Grid

Grant agreement no. 825627 – Horizon 2020, ICT 2018-2020 – Innovation Action

Coordinator Prof. Dr. Georg Rehm (DFKI)

Start date, duration 01-01-2019, 42 months (GA amendment version: AMD-825627-7)

Deliverable number D2.6

Deliverable title ELG platform (final release)

Type Report

Number of pages 52

Status and version Final – Version 1.0

Dissemination level Public
Date of delivery Contractual: 28-02-2022 – Actual: 28-02-2022

WP number and title WP2: Grid Platform – Language Grid
Task number and title Task 2.3: Implementation, integration and initial population of the ELG plat-

form; Task 2.4: Development and integration of APIs between technical com-
ponents of the core ELG system; Task 2.7: Operations, maintenance, updates
– upload and integration of new grid content; Task 2.8: Development and in-
tegration of ELG platform management and maintenance

Authors Penny Labropoulou (ILSP), Dimitris Galanis (ILSP), Miltos Deligiannis (ILSP),
Katerina Gkirtzou (ILSP), Leon Voukoutis (ILSP), Athanasia Kolovou (ILSP), Di-
mitris Gkoumas (ILSP), Juli Bakagianni (ILSP), Stelios Piperidis (ILSP), Florian
Kintzel (DFKI), Remi Calizzano (DFKI), Georg Rehm (DFKI), Ian Roberts (USFD),
Kalina Bontcheva (USFD), Andis Lagzdiņš (TILDE), Aivars Bērziņš (TILDE)

Reviewers Katrin Marheinecke (DFKI), Andres Garcia Silva (EXPSYS)

Consortium Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

Institute for Language and Speech Processing (ILSP), Greece

University of Sheffield (USFD), United Kingdom

Charles University (CUNI), Czech Republic

Evaluations and Language Resources Distribution Agency (ELDA), France

Tilde SIA (TILDE), Latvia

HENSOLDT Analytics GmbH (HENS), Austria

Expert System Iberia SL (EXPSYS), Spain

University of Edinburgh (UEDIN), United Kingdom

EC project officers Philippe Gelin, Miklos Druskoczi

For copies of reports and other
ELG-related information,
please contact:

DFKI GmbH
European Language Grid (ELG)
Alt-Moabit 91c
D-10559 Berlin
Germany
Prof. Dr. Georg Rehm, DFKI GmbH
georg.rehm@dfki.de
Phone: +49 (0)30 23895-1833
Fax: +49 (0)30 23895-1810

http://european-language-grid.eu
© 2022 ELG Consortium

European Language Grid
D2.6 ELG platform (final release)

ELG 3/52

Table of Contents
List of Figures ___ 4	
List of Tables ___ 4	
List of Abbreviations and Acronyms ___ 5	
Abstract ___ 7	
1	 Introduction __ 7	
2	 The ELG Platform ___ 9	
2.1	 Overview ___ 9	
2.2	 ELG Platform Architecture ___ 9	
2.3	 Development Roadmap ___ 10	
3	 ELG Base Infrastructure __ 11	
3.1	 Kubernetes Clusters __ 11	
3.2	 Management of Source Code Docker Images and LT services __________________________ 12	
3.3	 Storage __ 13	
4	 Background: Metadata Model, User Model and Publication Policies ____________________ 14	
4.1	 Metadata Model ___ 14	
4.1.1	 Overview of the Model __ 14	
4.1.2	 Full, Minimal and Relaxed Versions of the Model ___________________________________ 17	
4.2	 Publication Lifecycle of Metadata Records and Publication Policies _____________________ 18	
4.3	 User Categories __ 21	
5	 ELG Platform Backend ___ 22	
5.1	 ELG Catalogue ___ 22	
5.1.1	 Catalogue Application ___ 22	
5.1.2	 Database ___ 24	
5.1.3	 Indexing and Search Components ___ 24	
5.1.4	 Components and Procedure for the Upload/Download and Storage of Content Files _______ 25	
5.1.5	 Registration and Publication of ELG-compliant LT Services ____________________________ 26	
5.1.6	 Catalogue Population ___ 27	
5.1.7	 Assignment of Persistent Identifiers __ 30	
5.1.8	 Export of Metadata Records and Exposure through Other Catalogues ___________________ 31	
5.2	 LT Processing Services Execution Backend ___ 31	
5.2.1	 Internal LT APIs __ 31	
5.2.2	 Kubernetes and Knative ___ 33	
5.2.3	 LT Service Execution Server and External LT API ____________________________________ 34	
5.2.4	 LT Service Helper Services __ 36	
5.3	 ELG Platform Management and Support Services ___________________________________ 36	
5.3.1	 User Management ___ 36	
5.3.2	 Monitoring and Analytics __ 37	
5.3.3	 Licensing and Billing Module __ 39	
6	 ELG Platform Access Methods __ 41	
6.1	 Access through the Website __ 41	
6.1.1	 Catalogue User Interface __ 42	

European Language Grid
D2.6 ELG platform (final release)

ELG 4/52

6.1.2	 Integration with the Website ___ 48	
6.2	 Python SDK Toolkit ___ 48	
6.2.1	 Browsing the Catalogue ___ 48	
6.2.2	 Interaction with the Resources __ 49	
7	 Conclusions ___ 51	
8	 References __ 51	

List of Figures
Figure 1: ELG user manual __ 8	
Figure 2: ELG architecture __ 10	
Figure 3: ELG-compatible service with components running outside ELG _____________________________ 13	
Figure 4: Overview of the ELG-SHARE entities ___ 15	
Figure 5: Excerpt of the ELG metadata model (focusing upon tools/services) __________________________ 16	
Figure 6: Minimal version for ELG compatible services __ 17	
Figure 7: Minimal version for corpora ___ 18	
Figure 8: ELG publication lifecycle __ 20	
Figure 9: Claim of metadata records __ 29	
Figure 10: JSON input __ 32	
Figure 11: JSON output ___ 32	
Figure 12: Knative configuration example __ 34	
Figure 13: Screenshot of the service-specific Grafana dashboard ____________________________________ 38	
Figure 14: Billing workflow between ELG and Chargebee platforms __________________________________ 40	
Figure 15: Chargebee subscription management window ___ 41	
Figure 16: Browse/Search page of the ELG catalogue ___ 42	
Figure 17: Free text search __ 43	
Figure 18: Landing page of an ELG-compatible service __ 44	
Figure 19: Try out GUI __ 45	
Figure 20: Editor form for corpus ___ 46	
Figure 21: My grid ___ 47	
Figure 22: My items ___ 47	
Figure 23: Python SDK Catalogue code example ___ 49	
Figure 24: Python SDK Corpus code example __ 49	
Figure 25: Python SDK Service code example ___ 50	
Figure 26: Screenshot of the local installation GUI ___ 51	

List of Tables
Table 1: ELG platform release plan __ 11	
Table 2: Validation types by source and type of metadata record ___________________________________ 21	

European Language Grid
D2.6 ELG platform (final release)

ELG 5/52

List of Abbreviations and Acronyms

API Application Programming Interface

ASR Automatic Speech Recognition

CD Continuous Deployment

CI Continuous Integration

CMS Content Management System

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

DoA Description of Action

DOI Digital Object Identifier

ELG European Language Grid

FAIR Findable, Accessible, Interoperable, Reusable

GDPR General Data Protection Regulation

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IE Information Extraction

IRI Internationalised Resource Identifier

JSON JavaScript Object Notation

JSON-LD JSON – Linked Data

JWT JSON Web Token

K8s Kubernetes

LOD Linked Open Data

LR Language Resource

LRT Language Resource and Technology

LT Language Technology

MIME Multipurpose Internet Mail Extensions

MT Machine Translation

MVP Minimum Viable Product

NCC National Competence Centre

NLP Natural Language Processing

PID Persistent Identifier

R1 Release 1

R2 Release 2

R3 Release 3

REST Representational State Transfer

SDK Software Development Kit

SPA Single Page Application

TC Text Classification

TTS Text to Speech Synthesis

UI User Interface

UML Unified Modeling Language

European Language Grid
D2.6 ELG platform (final release)

ELG 6/52

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Markup Language

XSD XML Schema Definition

YAML YAML Ain't Markup Language

European Language Grid
D2.6 ELG platform (final release)

ELG 7/52

Abstract

This document introduces the final release (Release 3, R3) of the European Language Grid (ELG) platform. We

present the platform’s architecture, its main building blocks, components and functionalities as well as the soft-
ware and application frameworks used. The document includes an overview of the base infrastructure, the

platform backend (with a detailed presentation of the catalogue application and the execution component for

the LT processing services), and a short account of the catalogue frontend. A detailed presentation of the ELG
catalogue graphical user interface is included in D3.4. The current contents of the catalogue and the ELG

metadata model are also briefly described. Finally, the ELG user manual, an online document serving all ELG

platform users (consumers, providers, validators of Language Resources and Technologies and administrators
of the ELG Platform), which was initiated in Release 1, has been updated to reflect the current changes and ad-

ditions. ELG Release 3 is available at https://live.european-language-grid.eu.

1 Introduction

Deliverable D2.6 consists of two parts:

• the software of the final release (Release 3, R3) of the European Language Grid (ELG) platform1, i.e., the

modules implementing the main functionalities foreseen for this release, and the current platform con-
tents, namely a set of ready-to-deploy Language Technology (LT) services, a set of Language Resources

(LRs) available for direct download, as well as metadata descriptions for Language Resources and Tech-

nologies (LRTs) and LT-related actors and activities;
• this report, which provides an overview of the platform, its architectural design and main components,

the software and application frameworks used for their implementation, the application programming

interfaces (APIs), as well as the operations and supported user interactions.

The final release includes the main building blocks required for the operation of the platform:

• the user management component with all user roles defined for ELG,
• the components that support the uploading, documenting, storing, managing, and downloading of

resources with their documentation (metadata records),

• the components that support the documenting and managing of metadata records,
• the components that enable the browse and search features of the catalogue and expose the metadata

records to users,

• the components that are responsible for the execution of the LT services,
• the APIs required for interacting with other layers (front-end, execution of LT services),

• the prototype billing component, and

• the component for assigning Digital Object Identifiers (DOIs) to ELG-hosted resources and services2.

This report is organised as follows: Section 2 provides an overview of the ELG platform, its architecture, and the
development roadmap. Section 3 presents the base infrastructure on which the platform is deployed. Section 4

1 The platform code is maintained at https://gitlab.com/european-language-grid/platform, as it is under constant development through-
out the project duration. We currently discuss the appropriate software licence to apply to the code base, so that it can be shared with
an open permissive licence enabling contributions from third parties.
2 The implementation and integration of this component is under way; for more information, see Section 5.3.4.

European Language Grid
D2.6 ELG platform (final release)

ELG 8/52

presents the models and policies that influence the design and operations of the ELG platform; these include

the metadata model, the publication lifecycle of metadata records, and the user management model. Section 5
focuses on the ELG platform backend, which comprises three major components: the ELG platform catalogue

(in short, ELG catalogue), the ELG (platform) language processing backend services and the ELG (platform) man-

agement and support backend services. Section 6 presents the components that support access to the ELG

Platform, i.e., the frontend and the Python SDK.

Finally, the ELG user manual (Figure 1), with instructions for all users (content on consumers, providers and ad-

ministrators) of the ELG platform3, forms an integral part of this deliverable, albeit as an online document at

https://european-language-grid.readthedocs.io. At the time of writing, it includes the following contents:

• introduction and overview of the catalogue contents
• instructions for consumers (search and view of the catalogue and catalogue items, testing of LT services

and download of resources)

• instructions for providers, with subsections for ELG-integrated LT services (LT tools and services ready
to be deployed in the platform) and data resources (i.e., corpora, models, lexica, terminologies, etc.);

step-by-step instructions for the creation and management of metadata records, with examples and

links to additional material are included in this section
• instructions for validators & administrators

• annexes with useful links to more detailed information material (e.g., the specifications of the ELG API

for LT service execution, instructions on containerisation, etc.) and the use of the Python SDK.

Given that the implementation of the ELG platform is ongoing, the manual is conceived as a living document

that we continuously update following the evolution of the platform.

Figure 1: ELG user manual

3 For information on types of users, see Sections 2.1 and 4.3, and Deliverables D2.1 and D3.1.

European Language Grid
D2.6 ELG platform (final release)

ELG 9/52

2 The ELG Platform

The following section introduces the ELG platform, the platform architecture and the development roadmap,

giving an overview of the main features of each release.

2.1 Overview
The European Language Grid (ELG) platform [Rehm et al. 2020] aims to become the primary platform for Lan-

guage Technology (LT) in Europe; it is developed to be a scalable cloud infrastructure that provides access to

commercial and non-commercial LTs for all European languages, including LT tools/services deployed within
ELG, and data resources (datasets, lexica, models, etc.). The European LT community can upload their technolo-

gies and datasets into ELG in an easy and efficient way, deploy them through the Grid, and connect them with

other resources. In addition, the ELG platform offers information for and about the LT domain and activities,

such as information on projects and stakeholders.

The ELG project and platform targets a wide range of users with different requirements and expectations4 (cf.

Deliverables D2.1, D3.1 and D7.1 for more information):

• content providers and developers and integrators, i.e., providers and consumers of LT resources,

• information providers and information seekers, i.e., providers and consumers of LT-related (meta)-in-
formation,

• citizens, i.e., individuals that are interested in LT (essentially a subset of information consumers),

• ELG platform and content technical users and validators, i.e., the ELG technical team that maintains
and monitors the day-to-day operation and performance of the platform and performs operations re-

lated to the platform contents.

Users may identify themselves with one or more of the above categories when interacting with the system,

with different needs each time. In the rest of the document, we refer to them as consumers, providers, valida-

tors and administrators.

ELG R3 extends and improves the functionalities introduced in previous releases. The focus for this release has

been on

• the interaction with other infrastructures and catalogues, by facilitating the import of metadata records

from other catalogues and exposing metadata records to other catalogues,
• enhancing the support of the publication lifecycle, through the extension of validation checks and the

development of GUI forms for the validation and service registration process,

• the improved support of the versioning of metadata records and LT services,
• the design and development of a prototype billing model, and

• the setup of an operational module for the assignment of persistent identifiers.

2.2 ELG Platform Architecture
An overview of the ELG platform architecture is shown in Figure 2. The platform consists of three main layers:

the base infrastructure, the platform backend and the platform frontend (user interface).

4 See Deliverables D2.1, D3.1 and D7.1 for more information.

European Language Grid
D2.6 ELG platform (final release)

ELG 10/52

Figure 2: ELG architecture

The base infrastructure (Section 3) is the layer on which all ELG software components are deployed and run; it

includes the supporting tools that facilitate development and management of the ELG platform software.

The platform backend layer (Section 5) consists of all the components that enable the operation of the ELG

platform, i.e., the core components (such as the catalogue database and index), the component for processing

LT services and the platform support and management components (e.g., the user management module).

The platform frontend layer (Section 6) consists of (a) the static pages maintained in the Content Management

System (CMS), which aim to provide information on the project and the LT domain and activities, and (b) the

platform user interfaces including the catalogue UI (i.e., the browse/search page with all the metadata records,
the view pages of the metadata records), the ELG interactive metadata editor for registering resources, the

user dashboard, etc. The catalogue UI consumes REST services exposed by the ELG platform backend (e.g., cat-

alogue application, LT Service execution server).

This report focuses on the platform backend, i.e., the platform components, the ELG catalogue, the LT service
execution layer and the supporting components and functionalities. For the sake of completeness, an abridged

description of the frontend components supporting the interaction of users with the ELG platform is also in-

cluded here, while the CMS and its contents are described in Deliverables D3.2 – D3.4.

2.3 Development Roadmap
As specified in the amended ELG Description of Action (DoA), the platform is developed and delivered in three

major releases in April 2020 (M16), March 2021 (M27) and February 2022 (M38) (cf. Table 1).

Two additional pre-releases had been made available before R1: (1) a demonstration version (Minimum Viable

Product version, MVP), developed at an early stage and presented in October 2019 (M10 of the project) at
META-FORUM 2019, i.e., the first Annual ELG Conference (see D7.5); (2) an alpha release made available on

request to interested users – especially those who were preparing proposals for the ELG Open Call – in Febru-

ary 2020 (M14).

European Language Grid
D2.6 ELG platform (final release)

ELG 11/52

ELG platform
Release 1 (R1)
(D2.4; delivered
M16)

• Backend components required for the operation of the catalogue:
o simple user management component,
o components supporting documentation/uploading, storing/downloading of all

resource types (tools and services, datasets, etc.), z<
o APIs required for interacting with other layers

• First version of the guidelines on its use and provision of resources, instructions for
containerisation and invoking remotely accessible web services

• Limited sets of tools and services and LRs

ELG platform
Release 2 (R2)
(D2.5; delivered
M27)

• Updated version of the platform including the components and APIs required for
running language processing services (containerised services stored in the ELG and
web services via REST APIs) directly in ELG

• Updated version of the guidelines on its use and provision of resources, instructions
for containerisation and invoking remotely accessible web services

• Updated catalogue with resources from ELG partners

ELG platform
Release 3 (R3)
(D2.6; due M38)

• Updated version of the platform including management and maintenance of the
platform: monitoring of the platform, monitoring of remotely offered services, plat-
form usage analytics, prototype version of user billing and payment services

• Updated catalogue with resources from ELG pilots and collaborating initiatives

Table 1: ELG platform release plan

3 ELG Base Infrastructure

The base infrastructure is the layer on which the ELG platform (backend and UI) runs. It also includes tools for

software development and consists of the following parts: two Kubernetes5 clusters (one for development and
a second one for production), source code repositories, external/internal container registries6, and a file and

object storage module. More detailed information regarding the ELG Base Infrastructure can be found in the

dedicated infrastructure deliverables (D1.1 – D1.5), while this section gives an overview of the main features.

3.1 Kubernetes Clusters
The ELG platform software can be divided into two parts:

• the core components, e.g., the catalogue database, the metadata index, the catalogue application, etc.,

which are developed and maintained exclusively by the ELG technical team, and

• the set of LT tools/services that are integrated into ELG, i.e., made available through the ELG platform,

and that have been developed by consortium partners or external providers.

All components and services mentioned above run in ELG as Docker containers in a Kubernetes (in short k8s)

cluster. This facilitates management and deployment (see D1.5 and D2.2). The components that run in the clus-

ter are grouped in k8s namespaces based on their functionalities. A k8s namespace is a virtual sub-cluster,
which can be used to restrict access to the respective containers that run within it. For instance, we have an

5 https://kubernetes.io
6 https://www.docker.com

European Language Grid
D2.6 ELG platform (final release)

ELG 12/52

"elg-core" namespace for core components such as Keycloak7, which manages user authentication and nginx8,

the web server that acts as gateway/proxy. In the "elg-backend" namespace, we have deployed the database,
the indexer and the REST-based catalogue application. LT services are deployed by default in the "elg-srv"

namespace; however, separate dedicated namespaces are allocated for LT services for which restricted access

is required.

Currently, ELG uses two clusters: the first cluster hosts the production instance9 of the platform, while the sec-
ond one10 (which is deployed on more limited hardware resources) is used for development and testing. Both

clusters run on Virtual Machines (VMs)/hardware of SysEleven11, a Berlin-based cloud service provider. Sys-

Eleven is ELG’s subcontractor and was chosen in a selection process at the beginning of the project (see D1.1).

Deployment of an application in a Kubernetes cluster requires a set of configuration files in YAML12 format that
specify the required information, such as the Docker image location, the number of replicas that will be de-

ployed, the ports that will be exposed to the rest of the cluster, and the deployed service’s name. The latter

can be used for access by other k8s applications/services. In ELG we have to manage several software compo-
nents and we also need different deployments of the platform, such as a single-node deployment for develop-

ment/testing, deployments in SysEleven. For these we use Helm13, a k8s package manager that automates de-

ployments. Helm uses (generic) templates for describing k8s resources. For each different installation/deploy-
ment, the templates are filled with the respective configuration data by running a script. The generated config-

uration files are then submitted to the cluster via the respective k8s API. The required scripts, helm templates

and configuration files that instantiate a specific ELG deployment are kept in a separate branch in ELG’s GitLab
repository14, i.e., we have separate branches for production and development. For automating deployments, a

continuous integration/continuous deployment (CI/CD) pipeline was created. When a source file in a branch is

changed, the CI/CD pipeline is triggered. It downloads the latest helm templates and scripts from GitLab and
runs the scripts that inject the configuration. Finally, it deploys the final resource files to the respective k8s

cluster.

All ELG services (e.g., CMS, LT service execution, catalogue backend and UI) are exposed to the public internet

via a Nginx web server (an ingress controller). For each service the appropriate code is inserted to the respec-
tive k8s config files that specifies the mapping between a publicly accessible URL/endpoint to the respective

internal k8s backend service name (and port). Nginx is also deployed as a Docker container.

3.2 Management of Source Code Docker Images and LT services
The platform’s source code is hosted in an "organisation" account on GitLab (https://gitlab.com/european-lan-
guage-grid), a code repository and development platform (for Git projects), similar to GitHub and BitBucket. All

code stored within the ELG organisation account on GitLab is maintained by the ELG consortium which ensures

proper versioning of all artifacts. GitLab was chosen because it provides numerous features for free, such as an
unlimited number of private and public repositories, a built-in Container registry for storing images and built-in

CI/CD functionalities; these CI/CD pipelines are different from the ones described in Section 3.1, which are used

7 https://www.Keycloak.org
8 https://www.nginx.com
9 https://live.european-language-grid.eu
10 The ELG development cluster is accessible to consortium members only by using IP whitelisting.
11 https://www.syseleven.de/en/
12 https://yaml.org
13 https://helm.sh
14 https://gitlab.com/european-language-grid

European Language Grid
D2.6 ELG platform (final release)

ELG 13/52

for deploying to our k8s clusters. The GitLab CI/CD is used, for example, to create the images that host the ELG

core components as well as images for LT services. In addition to GitLab’s Container registry, we make use of
other registries, such as DockerHub15 or Azure Container Registry16 for pulling components (e.g., PostgreSQL) or

LT services deployed at ELG.

The LT services that are deployed at ELG are created and maintained by different developers, groups, or com-

panies and hosted at different registries. Thus, there are cases where ELG cannot guarantee the availability of a

given LT service, for example:

1. The LT images are hosted in external container registries which are not immutable and their retention

policy is controlled by their respective owner. Thus, an LT image may be altered or become unavailable.

2. Availability of a given service is restricted by specific limitations, such as relying on an external proprie-
tary licence.

3. The availability of services which in turn call other LT services not hosted on the ELG infrastructure17.

To mitigate scenario 1, we have put a solution in place that combines the deployment of a private/internal con-

tainer registry for storing the images and a process for keeping backup of the services’ images. The internal
container registry is deployed within SysEleven. The LT services that are deployed on the platform are pulled

from their respective external original location (as defined by the service provider) on the first deployment.

These images are then copied in the internal container which is used exclusively by the ELG project. Images are
persisted there because (a) this registry is located nearer to the actual infrastructure and is faster to access in

case images need to be pulled again and (b) because with external registries, there is no guarantee images will

not be changed/overridden or remain accessible for longer periods of time. So, to be able to serve LT services

consistently, all their images are copied to the dedicated ELG registry.

Use cases 2 and 3 can be detected through the automatic testing of LT services that is already in place on the

ELG, but they will need to be addressed by the individual LT service providers. Regarding point 3 in particular, in

R3 the catalogue UI indicates via a flag (Figure 3) whether all of the service components are hosted directly
within the ELG-controlled infrastructure or whether the service relies on externally hosted services and may be

subject to failures that are beyond the control of the ELG.

Figure 3: ELG-compatible service with components running outside ELG

3.3 Storage
For the storage of physical files, e.g., language resources and software delivered as source code, etc., we use an
S3-compatible Object Storage solution that is hosted by SysEleven. S3-compatible Object Storage provides

15 https://hub.docker.com
16 https://azure.microsoft.com/en-us/services/container-registry/
17 See Section 5.2 on the integration options for LT services.

European Language Grid
D2.6 ELG platform (final release)

ELG 14/52

functionalities that facilitate access to, and management of the data, organised in "buckets" with different ac-

cess policies, thus ensuring access control and security. In the current implementation we have created a "pub-
lic" and a "private" bucket. In the "public" bucket, ELG keeps all publicly accessible files (e.g., logos of organisa-

tions); no authentication/authorisation is required for them. In the "private" bucket ELG keeps files (e.g., the

content files of a resource) which are not accessible to all users; i.e., their download is constrained by the li-

censing terms of the resource and the publication status (see Section 5.1.4 for more details).

Access restrictions to an S3 object (e.g., in the case of private buckets) are applied based on the owner of the

S3 account; only via this account is it possible to control the creation and management of storage buckets, to

provide temporary access to requested objects if and when needed. A user interacts with the S3 Storage
through the S3 Storage Proxy and the respective authorisation module which is part of the catalogue backend.

The authorisation module ensures that users have access only to the resources they own or have been granted

access to. The S3 Proxy and the catalogue backend module interact with S3 based on the S3 API.

Internally within the cluster, certain parts of the platform additionally make use of network block device stor-

age (SSD) attached to their respective containers.

4 Background: Metadata Model, User Model and Publication Policies

This section presents the conceptual and operational modules that influence the design of the ELG platform.

We present an account of the metadata model, the publication lifecycle of ELG and the foreseen user catego-

ries.

4.1 Metadata Model
This subsection is devoted to the presentation of the ELG metadata model, its main features and design princi-

ples as well as the different versions that have been implemented in the ELG platform.

4.1.1 Overview of the Model

The ELG metadata model (or ELG-SHARE18) is used for the description of all entities of interest to the ELG tar-
get users19. Essentially an application profile of the META-SHARE schema, it constitutes the backbone of the

ELG catalogue, which brings together language processing services and tools, LRs (datasets of different types

and media, models, lexica, terminologies, etc.) as well as actors and activities related to LT (Figure 4).

18 The ELG metadata model builds upon, extends and updates META-SHARE and its application profiles. Modifications have been made (a)
in the contents (e.g., addition of elements for GDPR, improvement of the description of LT services and models), in response to the project
requirements and more recent developments in the metadata area at large, (b) in the implementation, which now combines the XSD ap-
proach used for META-SHARE profiles with the deployment of two ontologies, namely META-SHARE (https://w3id.org/meta-share/meta-
share/) and OMTD-SHARE (https://w3id.org/meta-share/omtd-share/), for the definition of the elements and values.
19 For a detailed description, see Deliverable D2.3 and [Labropoulou et al. 2020].

European Language Grid
D2.6 ELG platform (final release)

ELG 15/52

Figure 4: Overview of the ELG-SHARE entities

The model caters for the description of ELG core entities, i.e.,

• LT tools/services, covering all software that performs language processing and/or any LT-related opera-

tion (e.g., basic processing tools, applications, web services etc. that perform annotation, machine trans-

lation systems, speech recognisers, etc.).
• Corpora (datasets), defined for our purposes as structured collections of pieces of data (textual, audio,

video, multimodal/multimedia, etc.), typically of considerable size and selected according to criteria ex-

ternal to the data (e.g., size, type of language, type of producer or expected audience, etc.) to represent
as comprehensively as possible the object of study.

• Lexical/conceptual resources, i.e., resources (such as terminological glossaries, word lists, semantic lex-

ica, ontologies, gazetteers, etc.) organised on the basis of lexical or conceptual units (lexical items,
terms, concepts, phrases, etc.) with their supplementary information (e.g., grammatical, semantic, sta-

tistical information, etc.).

• Language descriptions, i.e., resources aiming to describe a language or some aspect(s) of a language via
a systematic documentation of linguistic structures (e.g., computational grammars, statistical and ma-

chine learning-computed language models); it should be noted that in R3, although this class is still used

in the metadata schema, the catalogue shows its subclasses, i.e., model, computational grammar and

uncategorized language description as distinct resource types.

The ELG model also provides for entities involved in the production and usage of LTs/LRs and, in general, LT

activities, i.e., actors (further distinguished into organizations, groups, persons), documents (e.g., user manuals,

publications, etc.), projects and licences/terms of use. The model groups all metadata elements along three key
concepts: resource type, media type and distribution. The resource type element distinguishes LRTs in the four

classes presented above. Media type refers to the form/physical medium of a data resource (or of its parts, in

the case of multimodal resources), i.e., text, audio, image, video and numerical text (used for biometrical, geo-
spatial and other numerical data). Finally, distribution, following the DCAT vocabulary20, refers to the physical

form of the resource that can be distributed and deployed by consumers; for instance, software resources may

be distributed as web services, executable files, or source code files, while data resources may be distributed as

20 https://www.w3.org/TR/vocab-dcat-3/

European Language Grid
D2.6 ELG platform (final release)

ELG 16/52

PDF, CSV, or plain text files, or through a user interface. Administrative and descriptive metadata are mostly

common to all LRTs, while technical metadata differ across resource and media types as well as distributions.

Figure 5 provides an example with part of the metadata model for tools/services.

Figure 5: Excerpt of the ELG metadata model (focusing upon tools/services)

The model is implemented in the form of an XML Schema Definition (XSD)21. Its elements are linked to entities
from two ontologies, namely the META-SHARE22 ontology, which includes most elements and controlled vocab-

ularies, and the OMTD-SHARE ontology23, reserved for the controlled vocabularies of LT categories (also re-

ferred to as "LT taxonomy"), data formats, annotation types and methods. Each metadata element and value
has an identifier which contains the Internationalised Resource Identifier (IRI) of the corresponding entity. This

approach contributes to the FAIRness24 of the metadata model, facilitates linking to metadata records in other

catalogues, and supports import/export in the JSON-LD serialisation format, which increases the visibility of
ELG metadata records overall. The use of XSD enables us to transform the metadata schema easily into an en-

tity-relationship model25, thus facilitating its documentation and conversion into the relational database used

in the ELG catalogue backend. Ontology entities are automatically converted into XML elements, as used in the
XSD. This approach enables an easy update of the schema alongside the evolution of the ontology. All relations,

labels and definitions are copied into the XML elements with the same script and feed the display labels in the

landing pages of the metadata records.

21 The ELG metadata schema is available at https://gitlab.com/european-language-grid/platform/ELG-SHARE-schema, accompanied with
documentation, and metadata record templates for all resource and media types.
22 https://w3id.org/meta-share/meta-share/
23 http://w3id.org/meta-share/omtd-share/
24 The FAIR Guiding Principles for scientific data management and stewardship aim to improve the findability, accessibility, interoperabil-
ity, and reuse of digital assets. The principles emphasise machine-actionability (i.e., the capacity of computational systems to find, ac-
cess, interoperate, and reuse data with none or minimal human intervention) because humans increasingly rely on computational sup-
port to deal with data as a result of the increase in volume, complexity, and creation speed of data, see https://www.go-fair.org/fair-
principles/.
25 https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

European Language Grid
D2.6 ELG platform (final release)

ELG 17/52

Τhe design and the implementation of the model have been completed in R1, while updates and changes have

been made throughout all the releases of the platform, taking into account user feedback, technical require-
ments of the platform (as its development progressed), new requirements that emerged from pilot and collab-

orating projects and, finally, the interoperability needs for mappings to other metadata schemas.

4.1.2 Full, Minimal and Relaxed Versions of the Model

The ELG model is rich and elaborate and caters for the documentation of the full lifecycle of LRTs. The abun-
dance of information, though, makes the task of creating metadata records quite tedious. To ensure flexibility

and uptake, we distinguish metadata elements into mandatory, recommended and optional. The criteria used

in ELG to determine the status of elements include: required for discovery, especially features considered of
high interest to ELG consumers (see D2.1 and D3.1); considered indispensable for accessing the resources and,

in the case of ELG-compatible services, ensuring proper deployment through the platform; supporting usage of

resources; deemed valuable for experiments and projects and essential for achieving interoperability with ex-

isting metadata schemas used in the wider LT and neighbouring communities.

To be included into the ELG platform, metadata records must in principle adhere to at least the minimal ver-

sion of the schema, i.e., they must include all the mandatory elements as well as the mandatory upon condition

elements, which depend on the values of other elements. For instance, if a corpus contains personal and/or
sensitive data, the provider must also encode whether these data are anonymised. Figures 6 and 7 present the

minimal version of the schema for ELG-compatible services and corpora respectively; mandatory upon condi-

tion elements are indicated with an asterisk.

Figure 6: Minimal version for ELG compatible services

European Language Grid
D2.6 ELG platform (final release)

ELG 18/52

Figure 7: Minimal version for corpora

In addition, a "relaxed" version of the schema has been introduced in R3 that is used only for metadata rec-

ords imported from catalogues with limited information or catalogues populated with metadata records of in-

terest to a broader range of communities (e.g., Zenodo26, EOSC27, etc.) and, thus, using more general schemas

(e.g. DCAT, DataCite28). This version is characterised by the following features:

• Further relaxation of the mandatoriness of specific elements and/or substitution with alternatives. For

instance, the "licence" element is deemed mandatory to ensure proper (re)usability of resources29, and

can only be linked to a legal document; in the relaxed version, it can be substituted with the "access
rights" element, a free text element. In a similar way, the media-type specific features, for resources

whose media type cannot be determined, are all attached to an "unspecified media part" component30.

• The addition of elements with free text values as an alternative to elements with controlled value vo-
cabularies or combined elements that cannot be distinguished from the source metadata record (e.g.,

when size is encoded as a free text combining amount and size unit together).

4.2 Publication Lifecycle of Metadata Records and Publication Policies
The ELG platform can be populated from a variety of sources:

• metadata descriptions created by individuals, optionally accompanied with the respective content
(physical) files (e.g. datasets). In the case of ELG-compatible LT services, an appropriate form (i.e. Docker

image) of the software that allows deployment at ELG should be provided;

• metadata descriptions automatically harvested from other catalogues/repositories;

26 https://zenodo.org
27 https://eosc.eu and https://eosc-portal.eu
28 https://schema.datacite.org
29 See also principle R1.1 of FAIR principles (https://www.go-fair.org/fair-principles/): (Meta)data are released with a clear and accessible
data usage license
30 It should be noted that wherever possible, the use of one of the ELG controlled values is the preferred option. For instance, the use of
media type-specific values in other elements (e.g., format values such as DOC or WAV, which are used only for text or audio files, respec-
tively) can be used to infer the media type.

European Language Grid
D2.6 ELG platform (final release)

ELG 19/52

• metadata descriptions collected and converted into the ELG metadata schema with appropriate con-

verters and imported in the ELG system in various ways; in this case, if the metadata are imported from
other catalogues/repositories, the resources (data files) may remain in their source repository or be

transferred to the ELG platform storage, depending on the negotiations with each source.

Depending on the source and the degree of the intended integration of the resource in the ELG platform, dif-

ferent requirements are set for the quality and completeness of the metadata description and the resource. A

set of publication policies and procedures have been set in place for this objective.

The first set of policies is related to the source and mode of import of the metadata record into ELG:

• For metadata records added by individuals: only individuals who have registered in the platform and

given the appropriate authorisation (i.e., assigned the provider role) can add metadata records; these

can be individuals who wish to share their own LRTs or act as representatives of an organisation to which
they are affiliated and wish to upload LRTs developed by that organisation. The registration procedure

for users includes consent to the ELG terms of use, whereby they commit to provide resources for which

they have the legal right to share them and that they are technically "safe". The provision of resources
by registered users who are logged in allows for giving credit to the specific providers, but also entrust-

ing them with all responsibility for any issues that may rise with regard to them. To further ensure qual-

ity and technical compliance to the extent possible, all metadata records added by individuals undergo
a validation process, as described below.

• For metadata records automatically harvested from other catalogues: these are imported only from

trusted sources following specific agreements31. Since they are already published in other repositories,
and, thus, considered trustworthy, there is no reason to submit them to the human validation process.

• For metadata records collected by the ELG team and collaborating projects: This refers to

o candidate resources identified by the ELG team in other catalogues, described semi-automati-
cally with at least the minimal version of the ELG schema, as presented in Deliverables D5.1 –

D5.3, and registered in the ELG platform through the same process envisaged for the popula-

tion by individuals, hence submitted to the same publication policies;
o bulk collection initiatives undertaken by the ELG team and a crowdsourcing initiative launched

by the European Language Equality project (see Section 5.1.6.3 and D5.3). In these cases, only

a subset of the required information was collected and converted to the ELG schema, i.e., the
records adhere to the relaxed version of the schema; therefore, there is no reason for submit-

ting the records to the validation process. Instead, these records are marked and can be

"claimed" for further enrichment by individuals. When this happens, they follow the normal

publication procedure as if they were originally submitted by individuals.

A second set of policies determines the validation types to which the metadata records are submitted based on

their resource type and the degree of integration in ELG. For metadata records registered by individuals, valida-

tion at the metadata level at least is foreseen. Further requirements apply specifically to LT services in order to
be integrated as ready-to-deploy in the ELG platform (see 5.1.5). For their publication, they go through a valida-

tion process that aims to ensure technical validity of the service itself. The process is performed by the ELG

technical team and includes checking the technical metadata required for the import and deployment of the

31 For more information, see Deliverables D5.1 – D5.3.

European Language Grid
D2.6 ELG platform (final release)

ELG 20/52

service, and the addition of ELG-specific information that will enable the execution of the service in the ELG

platform. Before publishing a tool/service, the validator checks that (a) it follows the ELG technical specifica-
tions; (b) its technical metadata are as required; (c) it can be executed in the ELG platform. Similarly, for data

resources uploaded in ELG, the validators make sure that the content files are conformant to the description

presented in the metadata record and that they contain no malicious parts.

The publication lifecycle of a metadata record (Figure 8) draws upon the principles of META-SHARE and imple-

ments the above policies in the form of the following states:

Figure 8: ELG publication lifecycle

• new item: A provider creates an item, by creating a metadata record through the interactive editor or

by uploading a metadata file (see Section 5.1.6) and, optionally, content files (physical files with the
resource contents).

• draft: Used as the initial state for metadata records created with the interactive editor. At this state,

providers do not have to fill in all mandatory elements; only compliance as to the data type of the ele-
ments is checked (e.g., elements that take URL values must be filled in with the accepted pattern).

• syntactically valid: The metadata record complies with the ELG metadata schema, and all mandatory

elements are filled in. The provider can still continue to edit it until satisfied with the description and
can then submit it for publication.

• submitted for publication: As soon as the provider submits it for publication, the record becomes no

longer editable and is assigned for validation.
• under validation: Depending on the item type and the source (see Table 2), the item is validated by

designated users at the metadata, technical and legal level. The validation aims to check the consistency

of the description and, where required, the technical compliance of the item to the ELG specifications;
it doesn't include any qualitative evaluation. The validation is currently performed by the ELG consor-

tium members.

• (approved and) published: for finalised metadata records (i.e., approved by validators); published rec-

ords are available in the public catalogue.

European Language Grid
D2.6 ELG platform (final release)

ELG 21/52

Type of records Validation type

Metadata Technical Legal

Harvested metadata N/A N/A N/A

Metadata records uploaded by ELG admin N/A N/A N/A

"Metadata only" records32 Yes N/A N/A

ELG compatible services Yes Yes Yes

LRTs uploaded (hosted) in ELG Yes Yes Yes

Table 2: Validation types by source and type of metadata record

The publication procedure for resources and the user model of ELG (Section 4.3) determines which users can

access metadata records in each of the above states. For instance, providers have access to their resources at
any time, but can only edit them until they submit them for publication; validators have access only to the re-

sources they are assigned to validate, after they have been assigned to them, and only with viewing rights.

Published records cannot be changed and cannot be deleted in order to ensure reproducibility of scientific re-

sults. Only in exceptional cases can they be unpublished. Such cases mainly have to do with the reporting of a
breach of Intellectual Property Rights and other legal issues, and/or technical malfunctions. If the issue is re-

solved, they are published again; if the issue is not resolved, they may be deleted and their landing page is re-

placed with a tombstone page.

Metadata records cannot be reverted to previous states, with the exception of

• records submitted for publication: when the validators find some issues, they are returned to the "syn-
tactically valid" state in order to be editable again by the provider of the metadata records;

• published records but only in exceptional cases and only by administrators in the cases described above,

as well as in the case of "claimable" metadata records that have been "claimed" by an individual; the
records are then returned to the "syntactically valid" state so that they can be edited by the assigned

individuals.

In addition, administrators have the right to revert all records to previous states, except for the "draft" state.

Once a record is syntactically valid, it can no longer return to the draft state.

4.3 User Categories
The user management model comprises a set of broad user categories and roles with access policies defined in

response to the functionalities of the ELG platform:

• Unregistered users: Users who are not registered with the platform and who are, hence, not logged in,

can browse through and search the contents of the catalogue of published metadata records, and view
their descriptions; they can download resources with open licences; however, they are not allowed to

register a resource, or run a published LT service; they have access only to published records.

• Registered users: These are the users with accounts in the ELG user database. Each registered user can
be assigned one or more of the following roles:

32 "Metadata only" records are records for projects, organizations but also for LRTs that are not uploaded in ELG.

European Language Grid
D2.6 ELG platform (final release)

ELG 22/52

o Consumer: In addition to the access rights of unregistered users, they can also try out LT ser-

vices with the GUIs provided in the platform, or in command mode.
o Provider: Providers have all the access rights of a consumer and are also able to register re-

sources. They have editing rights for the resources they have registered until they submit them

for publication.
o Validator: These are users who validate resources and confirm their publication. They have the

same rights as a consumer and advanced rights for the resources they validate. There are three

types of validators:
§ The legal validator assesses the legal standing of a language resource before it can be

published.

§ The metadata validator validates the content of "metadata only" records before they
are published.

§ The technical validator ensures that any ELG-hosted resource or ELG-compatible ser-

vice functions as intended via the ELG infrastructure.
o Content manager: The team of ELG colleagues that is responsible for the smooth transition of

a record submitted for publication to its published state, including the assignment of validators

for ELG hosted resources and ELG compatible services; content managers have full access to
all resources.

o Administrator: The team of ELG colleagues who develop and maintain the platform; adminis-

trators have full access to all resources and functionalities of the platform.

When users register at the ELG platform, they are automatically assigned the "consumer" role. Roles with more
privileges are assigned only by technical administrators. Users can request to obtain the "provider" status

through their user profile. There is no procedure for requesting the validator role since this is restricted to the

ELG technical team and managed by the administrators within the consortium.

5 ELG Platform Backend

The ELG platform backend comprises three major components: the ELG platform catalogue (in short, ELG cata-
logue), the ELG (platform) language processing backend services and the ELG (platform) management and sup-

port backend services. They are described in detail in the following subsections.

5.1 ELG Catalogue
In the following subsection, we present the catalogue backend components, i.e., the catalogue application, the
database, the indexing and search mechanism, the upload and download mechanism and procedure for con-

tent files stored in ELG, and, finally, discuss the population of the catalogue from the technical point of view.

5.1.1 Catalogue Application

The catalogue application is a RESTful backend providing all necessary functionalities for database manage-
ment and user access control to the ELG platform features. It is built with Django Web Framework (version

3.0.9) and Django REST Framework (version 3.11.1)

The catalogue application defines a set of REST API endpoints used for serving requests coming from the cata-

logue UI (described below in Section 6.1.1) the LT service execution server (described below in Section 5.2.3) or
the command line utility (SDK) of ELG that was created using Python. The REST endpoints are controlled by the

European Language Grid
D2.6 ELG platform (final release)

ELG 23/52

user authorisation policies, in order to distinguish between those that are accessible by everyone (e.g., the re-

trieval of a published metadata record) and those that require user authentication and a specific user role (e.g.,

users can create metadata records if they are authenticated and have been assigned the "Provider" role).

A key functionality of the catalogue application is the management of metadata records through CRUD opera-

tions, i.e., create, read, update and delete operations, as well as supporting operations for the management of

the full lifecycle of the metadata records, as described in Section 4.2. The defined REST API endpoints handle

requests for:

• creating metadata records, by uploading metadata via two separate endpoints: one consuming XML and

intended for batch uploads, and the other accepting JSON and used by the metadata editor UI

• updating metadata records via the interactive metadata editor; update is done only via JSON;
• retrieving a metadata record in JSON format to be rendered by the frontend (catalogue UI);

• exporting a metadata record, in XML format compliant with the ELG Schema;

• uploading a resource (content files) associated to a metadata record;
• downloading a resource in accordance with its licensing terms;

• authorising service execution (see Section 5.2.3);

• collecting usage information (see Section 5.3.2.1);
• submitting metadata records for publication;

• validating metadata records for publication.

The endpoints used for interacting with the database were created using Django REST Framework (DRF) and

Django models, the latter are serialised to JSON or XML via the respective serialiser.

In addition, a REST endpoint for metadata validation is offered for the validation of metadata records against
the ELG metadata schema. Providers who wish to upload metadata files, can validate their XML files via this

endpoint. This functionality is publicly available for single XML files or zipped archives, for batch validation at

https://live.european-language-grid.eu/catalogue/#/validate-xml as well as through the user's dashboard (see

Section 6.1).

Finally, a REST endpoint is utilised in a functionality that aims to reduce duplicate entries and normalise values

for related entities. The population of the ELG catalogue with metadata records for the LRTs includes refer-

ences to other entities, such as organisations and individuals that have developed the resource, projects that
have funded them, licences with which they are distributed, etc. These are often referred to with similar names

or titles; e.g., the "CC-BY 4.0" licence is also encountered as "Creative Commons Attribution 4.0", "CC-BY li-

cence", "CC BY license", etc. To tackle this, the ELG catalogue application offers a retrieval mechanism that
matches records of entities already imported in the database. The criteria for the retrieval are based, in priority

order, on (a) the identifiers, and (b) on the metadata elements that can serve to uniquely identify instances of

each entity type (e.g., the website for organisations and the email address for persons). In addition, where
available, we have pre-populated the ELG database with openly available datasets, such as the SPDX list of li-

cences33.

33 https://spdx.org/licenses/

European Language Grid
D2.6 ELG platform (final release)

ELG 24/52

5.1.2 Database

A PostgreSQL database (version 11.9) is used for the persistent storage of metadata records and of internal in-

formation required for ELG platform operations.

The database implements the ELG metadata schema in the form of a relational model. Therefore, all metadata

records must comply with the ELG schema in order to be imported and saved. The catalogue backend two end-

points used for creating metadata (the one accepting JSON and the other XML) as well as the endpoint for up-
dating metadata via JSON apply a set of validation rules that take into account the source of the record and

check the record against the minimal (e.g., for records created by individuals) or relaxed version (e.g., for rec-

ords from catalogues with general schemas) - see Sections 4.1, 4.2 and 5.1.6. An additional set of validation
rules that takes into account the values of specific metadata elements is applied to check the syntactic and par-

tial semantic consistency of the description (e.g., checks for "mandatory upon condition" elements). If a record

does not conform to these rules, validation errors are issued and presented to the user for correction; other-
wise, the records are saved in the database. The same set of validation rules are enforced by the frontend

when the metadata records are created with the interactive editor. An exception is made for "draft" records

(see Section 4.2) which are saved in a temporary form. In the case of "draft" records, both the backend and

frontend bypass the validation of mandatory elements and validate only their datatype.

5.1.3 Indexing and Search Components

Published metadata records can be searched through the catalogue UI, on a subset of the metadata infor-

mation indexed by Elasticsearch34, either by search queries or using faceted search. This subset includes

• for all entities, i.e., LRTs, projects and organisations: name or title, short name or title, description, key-
words and source;

• in addition,

o for organisations: country of registration, name of parent organisation (if it exists);
o for LRTs: resource type (and, in the case of language descriptions, subtype), version, language,

language variety, licence, condition of use, access rights, intended application, and whether

the record is an ELG compatible service, or with data uploaded in ELG;
o for Data Language Resources: media type, linguality type (indicating if the resource contains

data in one or more languages) and multilinguality type;

o for models: model type and model function;

o for LT tools/services: service function and whether they are language dependent or not.

By default, the search functionality matches whole words using the OR operator. To improve search results, for

the free text search functionality, the index has been enriched with synonyms of language names (retrieved

from Glottolog35) and service functions (retrieved from the OMTD-SHARE36 ontology). In addition, query ex-
pressions passed in the search parameter are also supported. Such expressions utilise the Lucene Query Syn-

tax37 and can be used for advanced queries such as exact phrase matches (e.g., "bilingual corpus"), fuzzy or

proximity search, term boosting, etc.

34 https://www.elastic.co
35 https://glottolog.org
36 http://w3id.org/meta-share/omtd-share/
37 https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

European Language Grid
D2.6 ELG platform (final release)

ELG 25/52

When queried by the catalogue UI component, the backend returns the search results in JSON format. The

JSON contains the indexed information for the metadata records, as well as the following: creation date, last
update date, number of views, number of downloads (if the metadata record has data stored in ELG), and for

ELG-compatible services number of executions and whether the record is a proxied one, and whether the rec-

ord is declared as "for information" or as "work in progress". The returned results can be sorted alphabetically,

as well as by their last update date.

In addition, dedicated pages that serve as a focused version of the catalogue are included in the dashboard UI

(see Section 6.1 and D3.3). These pages present a set of filtered records according to each user’s role (e.g., for

providers, a list of the items they have created, for validators, a list of the items they have been assigned for
validation). They include filtered and free text search functionalities like the main catalogue page, albeit with

different elements in the indices. More specifically:

• the index for the "my items" page (for providers) includes the following elements: name or title, publi-

cation status of the metadata record, item type, whether the record is accompanied by data uploaded
at the ELG infrastructure or whether the record is an ELG compatible service;

• the search elements for the "my validation tasks" page (for validators) are the following: name or title,

publication status of the metadata record, entity type, the curator of the records, the service registra-
tion status for the ELG compatible services, the status of the validation (i.e., technical, metadata and

legal), whether the record is resubmitted for validation, and whether the record is accompanied by data

uploaded at the ELG infrastructure.

Similar to the catalogue index, the results are returned in JSON format for both these cases and they can be
sorted alphabetically by item type or by the date of the last update (for the "my items" page) and the date of

submission for publication (for the “under validation” records). Furthermore, in addition to the indexed ele-

ments, the under validation records return supplementary information: the validators, previous reviewers’
comments and validators’ notes if they exist. It should be noted that advanced search functionality with the

Lucene Query Syntax and synonyms is not supported for the dashboard indices.

5.1.4 Components and Procedure for the Upload/Download and Storage of Content Files

Resources can be hosted in ELG, i.e., their metadata descriptions can be accompanied with their content (phys-

ical) files. The uploaded files are stored in a private S3 storage bucket, as described in section 3.3.

Data uploads are performed through an S3 Storage proxy (see Figure 2). The proxy communicates with the cat-

alogue backend which authorises the upload. In this way, we allow only the curator of a metadata record to

upload the files to be attached to this record. Multiple content files may be uploaded for each metadata record
(e.g. for resources that are available in different data formats). All files must be associated with at least one

distribution (cf. Section 4.1.1).

A similar process, albeit without the use of the S3 proxy, is used for managing the access granted to users when

downloading the datasets. More specifically, upon receiving a download request from the catalogue UI, the
backend checks the user’s access permissions depending on the user role and the status of the metadata rec-

ord.

If the metadata record is published, the download is authorised only for users that conform to the require-

ments imposed by the licensing terms of the specific dataset. For example, data with permissive licences can be
directly downloaded by users without further interactions. On the other hand, for data licensed upon condition

European Language Grid
D2.6 ELG platform (final release)

ELG 26/52

of explicit consent, the user is shown the licence document and has to agree to the terms; the backend decides

whether this request is eligible taking this consent into account: if the user accepts the terms, it returns a tem-
porary pre-signed S3 download URL to the catalogue UI; otherwise, an appropriate "permission denied" re-

sponse is returned.

If the metadata record is not published, only its curator, the assigned validators and administrators can down-

load the data, taking into account the publication status of the record; thus, the catalogue backend allows the
download of the resource directly, without checking any of the requirements imposed by the accompanied li-

censing terms.

The catalogue currently accepts compressed files in .zip format and stores information about the size, date of

upload and a hash digest (MD5) of the object that reflects changes to its contents; an ETag header is used for
including the hash digest to the http request/responses). Every uploaded content file, related to a metadata

record, is stored with a unique key, consisting of the metadata record’s storage object identifier (a UUID as-

signed to each metadata record upon creation) and a filename.

5.1.5 Registration and Publication of ELG-compliant LT Services

The process of registering an LT service to ELG is as follows:

• The LT provider creates a Docker 38image that contains an LT tool exposed via an ELG-compliant REST

service; the Docker image has to be uploaded to a Docker registry (e.g., GitLab, DockerHub). In some

cases, two images are required; one that contains the LT tool and one that implements the ELG API
and calls the LT tool via its own custom API. For more information see section 5.2.3.

• The provider creates a metadata record and submits it for publication (see Section 4.2).

• The administrators assign the metadata record to a validator; the record is now visible to the assigned
validators.

• The LT service is deployed to the k8s cluster by creating a configuration file39 and uploading it to the

respective GitLab repository. The CI/CD pipeline responsible for ELG deployments (Section 3) will auto-
matically deploy the new service. If requested (by the LT provider), before creating the YAML file, a

separate dedicated namespace is created for the LT service40. A user with the "technical validator" role

assigns to the LT service:
o The k8s REST endpoint that will be used for invoking it.41

o An id for the service that will be used to call the LT Service via the respective REST API (Sec-

tion 5.2.1).
o An appropriate try-out UI for the service type.

• The validator can use the try-out UIs or the command line to test the service; integration issues are

identified and solved in collaboration with the LT provider; as a communication medium we use

38 Kubernetes is also compatible with other containers besides Docker; it can host any other Open Container Initiative (OCI)-compliant
container (e.g., Kata, https://katacontainers.io/). OCI (https://opencontainers.org/) is a community project maintained by the Linux
Foundation that aims to establish common standards for containers. The OCI format was based on Docker. Currently, Docker is the most
popular containerization technology.
39 https://gitlab.com/european-language-grid/platform/infra - this repository is accessible only to the
platform administrators
40 A separate namespace is usually allocated for a set of services.
41 The endpoint follows this template http://{k8s service name for the registered LT service}.{k8s namespace for the registered LT ser-
vice}. svc.cluster.local{the path where the REST service is running at}.

European Language Grid
D2.6 ELG platform (final release)

ELG 27/52

dedicated Slack42 channels. This iterative process is continued until the tool/service is correctly inte-

grated. This procedure requires access to the k8s cluster for the validator.
• When the LT service works as expected, the validators approve the metadata record and it is finally

published at the public catalogue and, thus, available to all ELG users.

5.1.6 Catalogue Population

The catalogue population is performed in one of the following ways:

• registration of metadata records, optionally with accompanying data in the case of LRTs, and in an ELG-
compliant form for services, by platform users,

• automatic harvesting from other repositories/catalogues, and

• targeted collection initiatives and surveys aiming to gather as much information as possible for specific

categories (for organizations and LRTs so far).

5.1.6.1 Registration of Language Resources and Technologies by ELG Platform Users

ELG platform users can register their language resources via a) the ELG interactive editor, b) by uploading ELG

compliant metadata records in single or batch mode, or c) through a functionality that creates metadata rec-

ords from existing ones. In all cases, the metadata records must adhere to the ELG minimal version.

The interactive editor (see also Section 6.1 and Deliverables D3.3 – D3.4) supports users in creating new

metadata records, as well as editing/updating existing ones. It includes the mandatory and recommended

metadata elements. It supports users in creating "draft" and "syntactically valid" metadata records, as de-

scribed in Sections 4.2 and 5.1.2.

In the "upload metadata files" functionality, users are prompted to upload a file with the description of their

resource in XML format. In order to facilitate the registration process, pre-filled metadata templates are availa-

ble at the ELG GitLab repository43.

Finally, a "copy" functionality is at the service of users who want to use existing metadata records as a tem-
plate for generating similar ones (e.g., to create multiple Machine Translation services for different pairs of lan-

guages); for new records, users are prompted to add a new name. A similar functionality can be used for creat-

ing new versions of a record, in which case users only add the new version number and links to the previous

version(s) are automatically created. In both cases, curators can use the interactive editor for further changes.

5.1.6.2 Harvesting Other Catalogues/Repositories

As an additional channel for metadata population, the ELG platform aggregates metadata records from other

catalogues and repositories44.

The ELG platform implements an OAI-PMH client for harvesting metadata from other repositories which expose
their metadata via an ELG-compatible OAI-PMH endpoint. The process of harvesting first requires the registra-

tion of a third-party provider as an "OAI-PMH Provider" into the ELG catalogue by an ELG administrator. As

soon as communication is established, the third-party provider shares their OAI-PMH endpoint, which ELG will
call at regular intervals (currently once a week) in order to harvest their exposed metadata. The ELG harvester

42 https://slack.com
43 https://gitlab.com/european-language-grid/platform/ELG-SHARE-schema/-/tree/master
44 The import task is performed both manually and automatically. The procedure of manual identification and import of records into the
ELG platform is described in Deliverables D5.1 – D5.3. In this deliverable, we present the automatic procedures and functionalities.

European Language Grid
D2.6 ELG platform (final release)

ELG 28/52

accepts metadata records compliant with the ELG metadata schema minimal version; the ELG team supports

the providers in the process of conversion of their original schema into the ELG one. Currently, we accept OAI-
PMH harvested metadata from ELRC-SHARE45 and three national CLARIN consortia, namely LINDAT/CLARIAH-

CZ46, CLARIN-PL47 and CLARIN-SI48 (see D5.3 for more details). The harvested metadata get the "published" sta-

tus and are immediately visible at the ELG public catalogue.

A similar procedure is under implementation for catalogues that expose metadata with the OAI-PMH protocol,
yet in other schemas. The difference in this case is that the conversion of the metadata records into the ELG

schema is performed at the ELG side. For this reason, we are in the process of mapping the DCAT vocabulary

into the ELG schema, and implementing the relevant converter; DCAT was selected due to its widespread use
among catalogues with datasets. This approach will be used for the harvesting of metadata records from Ze-

nodo.

Zenodo presents an additional challenge for the harvesting procedure: it is a general catalogue for all types of

research outcomes, e.g., publications, datasets, posters, images, etc., and for a wide range of research commu-
nities. Since for ELG purposes, we are only interested in datasets and software that are of use to the Natural

Language Processing (NLP) and LT communities, we are experimenting with high-precision filtering methods

that will allow us to identify records of interest out of more than 2,000,000 records, of which around 600,000

for datasets and software.

A different procedure is used for catalogues that expose metadata records through custom APIs and proprie-

tary metadata schemas. This procedure is used only for catalogues that are of high interest to the ELG objec-

tives, following agreements, and has already been used for the import of records from Hugging Face49.

The catalogue of Hugging Face includes a large collection of datasets and ML (Machine Learning) models with a
focus on transformers. Although Hugging Face encourages adding descriptions for the resources, this is not

strictly enforced, and the suggested metadata elements do not follow a standard schema. Hugging Face ex-

poses two distinct APIs with JSON files for datasets and ML models respectively. These JSON files include a sub-
set of the metadata elements displayed on their catalogue and do not cover the minimal version of the ELG

schema50. Thus, the conversion and import of records from Hugging Face into ELG was restricted to datasets

and only to those that have filled in at least a description, and values for the language and licence elements,
which are deemed the minimum threshold for the findability and usability purposes in the context of ELG. A

custom converter was developed based on the mapping of the elements and, in the case of controlled vocabu-

laries, their values. Manual work was further necessitated for the enrichment of information for specific ele-

ments51.

5.1.6.3 ELG Collection and Crowdsourcing Initiatives

In R2, we have initiated another form for populating the ELG catalogue with bulk lists of metadata records (po-

tentially with limited information) that serve as seed for further enrichment.

45 https://www.elrc-share.eu
46 https://lindat.mff.cuni.cz
47 https://clarin-pl.eu/dspace/
48 https://www.clarin.si
49 https://huggingface.co
50 At the time of the import from Hugging Face, the relaxed version of the schema was not considered. At following stages, this will be
used to increase the number of imported records.
51 For more information, see Deliverable D5.3.

European Language Grid
D2.6 ELG platform (final release)

ELG 29/52

This mode has been used for the population of the catalogue with organisations that use or develop LT applica-

tions, thus enabling us to quickly create "yellow pages" for organisations active in the broader LT area. For this
purpose, we have merged lists of organisations from various sources, together with information on them –

mainly contact data and key terms that describe their LT-related activities. This list, divided into sub-lists by

country, was checked by the respective National Competence Centres (NCCs)52. The revised list, with more than
1,700 records, was uploaded into the ELG catalogue in two phases, first for companies and public organisations

and at a later stage for academic organisations.

The records that have been added in this way can be "claimed" by interested individuals that work for these

organisations to be further enriched (Figure 9). When a person claims a metadata record, the ELG administra-
tors are notified and can approve or reject the claim, taking into account the professional email account of the

user; if the claim is approved, the metadata record is unpublished and assigned to the user for further editing.

Once the user finishes the editing, the record is submitted for publication and goes through the normal publica-

tion procedure.

Figure 9: Claim of metadata records

During the timeframe of R3, the European Language Equality (ELE) project53, which collaborates with ELG to

promote digital language equality in Europe, has launched a survey54 to collect information on LRTs available

for the languages under investigation. The collection of information was performed through a web form de-
signed for this purpose that included a subset of the ELG schema mandatory metadata elements. Given the size

of the survey (over 26 informants throughout Europe for over 80 languages, official, regional, minority) and the

time restrictions, the demand for filling in even the minimal version was considered unrealistic.

52 For more information, see Deliverable D7.2.
53 https://european-language-equality.eu/
54 https://european-language-equality.eu/languages/

European Language Grid
D2.6 ELG platform (final release)

ELG 30/52

The survey outputs, in the form of spreadsheets, have been curated through semi-automatic and manual pro-

cedures by ELG staff and imported into the platform through scripts designed for this purpose. The metadata

records (over 6,000) are marked as claimable for further enrichment.

5.1.6.4 Current Contents

At the time of writing, the ELG catalogue includes the following set of public metadata records:

• 2,728 tools/services, of which 503 are fully integrated services provided by the ELG consortium partners,

pilot projects and other third parties (see D4.3 for a detailed report)
• 8,875 data resources, consisting in 6,237 corpora, 2,228 lexical/conceptual resources, 360 models, 46

computational grammars and 4 uncategorized language descriptions (see D5.3 for more information);

• 1,788 organisations and

• 34 projects, including the pilot projects (see D6.3).

These numbers are subject to change upwards in the immediate future as a result of the harvesting processes

currently going on.

5.1.7 Assignment of Persistent Identifiers

In line with the FAIR principles, and more specifically, F1 – "(Meta)data are assigned a globally unique and per-

sistent identifier"55, the ELG platform will soon support the assignment of persistent identifiers (PID) for LRTs.

For this operation, we have selected to use the DataCite56 service as a PID provider that assigns Digital Object

Identifiers (DOIs)57. DataCite is a leading global non-profit organisation that provides persistent identifiers

(DOIs) for research data and other research outputs. Organisations in the research community can join
DataCite as members to be able to assign DOIs to all their research outputs, thus enhancing their discoverabil-

ity. DataCite offers additional services for the DOI management, and facilitates connection and sharing of DOIs

in the broader research ecosystem. At the time of the writing, we have initiated discussions on the most appro-
priate plan for joining DataCite. We have also created a test account that allows us to make simulation of the

DOI assignment procedure.

Following the DataCite best practices58, we have opted to assign new identifiers only for the ELG-compatible

services and ELG-hosted resources. Metadata records (e.g., harvested from other catalogues, or registered by
individuals without any content files) will be identified by the URL of their landing page. It should be noted that

for resources which already have other identifiers (e.g., handle.net PIDs, DOIs, etc.), the related identifiers are

already included in their respective metadata record. The DOI will be minted at the same time the metadata

record gets published.

Moreover, we have decided to adopt the DOI versioning scheme introduced by Zenodo59. This means that for

each resource, one DOI will be registered for each of its versions, and one more, the "Concept DOI", represent-

ing all its versions and linking them together. The Concept DOI will always resolve to the landing page of the
latest versioned record of the resource, while all other DOIs will resolve to the specific version for which they

were assigned. Therefore, users will be able to use in their citations either the DOI for the specific version of a

55 https://www.go-fair.org/fair-principles/
56 https://datacite.org/
57 https://www.doi.org/
58 https://datacite.org/documents/DataCite_BestPractices_ServiceProviders_v1.pdf
59 Nowak, Krzysztof, Ioannidis, Alexandros, Bigarella, Chiara, & Nielsen, Lars Holm. (2018). DOI Versioning Done Right. Open Repositories
2018 (OR2018), Bozeman, US. Zenodo. https://doi.org/10.5281/zenodo.1256592

European Language Grid
D2.6 ELG platform (final release)

ELG 31/52

resource, when they want to refer to the exact artifact used, for instance, in their research work for reproduci-

bility reasons, or the Concept DOI, when they want to refer to the resource without further specifying the ver-

sion.

The ELG metadata schema (version 3.0.1) has been mapped to the DataCite Metadata Schema (version 4.3).

The mapping covers the full DataCite schema, i.e., it includes the mandatory elements as well as the recom-

mended and optional ones, wherever this was feasible. For creating DOIs we are going to use the DataCite REST
API and the metadata will be sent in the DataCite JSON format. We are currently in the process of testing this

procedure in order to be ready to fully integrate it in the publication lifecycle as soon as the administrative pro-

cedures are completed.

5.1.8 Export of Metadata Records and Exposure through Other Catalogues
All metadata records in the ELG catalogue are available for download in XML format compliant with the ELG

schema.

In addition, we expose the metadata records of LRTs to Google's dedicated search engine for research da-

tasets60. To this end, we have mapped a subset of the metadata elements to the schema.org61 vocabulary and

embed in the landing pages of LRTs the generated JSON-LD62 metadata in the form of structured data63.

Following the assignment of DOIs (see Section 5.1.7), we intend to share through the landing pages and REST

APIs the metadata records also in the DataCite schema.

5.2 LT Processing Services Execution Backend
One of the main goals of ELG is to provide a substantial number of LT services through the platform. To accom-
plish full integration and deployment of the services, we rely on containerisation and the specification of ge-

neric LT processing APIs. For accessing the LT services from the ELG catalogue, from the command line or by

using any programming language, a common public REST API has been made available (Section 5.2.1). The LT
service execution is powered by Knative, a platform installed on top of K8s that provides scale-down-to-zero

and autoscaling (Section 5.2.2).

5.2.1 Internal LT APIs

The LT tools we currently work with and integrate into ELG broadly fall into one of the following categories:
Information Extraction (IE), Text Classification (TC), Text-to-text generation (most notably Machine Translation

(MT), but also summarisation, anonymisation, etc.), Automatic Speech Recognition (ASR), Text to Speech Gener-

ation (TTS), plus a small but growing number of services that do not fit the primary categories (e.g., a SPARQL
API for accessing linguistic Linked Open Data (LOD)). For each principal category a specific API was defined (Task

2.5) with the aim of standardising the invocation of these services and their integration into the ELG platform.

This API specification and the adoption of Docker images for packaging the LT tools solves several interoperability
issues and facilitates their deployment in the ELG platform. The ELG requirements for integrating an LT service

are the following:

Expose an ELG compatible endpoint: An application that exposes an HTTP endpoint for the provided LT tool

should be created. The application should consume via the HTTP endpoint requests that follow the ELG API

60 https://datasetsearch.research.google.com
61 https://schema.org
62 https://json-ld.org
63 https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data

European Language Grid
D2.6 ELG platform (final release)

ELG 32/52

request format, call the LT tool and produce responses, again in an appropriate ELG JSON format. For instance,

for an IE tool, its HTTP endpoint should accept POST requests in the JSON-based format presented in Figure 10.

Figure 10: JSON input

Most parts of the request are optional, only "type" and "content" are required. The "features" and "annota-

tions" fields may be useful for services that can build on partially annotated output from other services. The

"start" and "end" of each annotation specify the position of the annotation within the text. For services that
process audio or image data, the API request is based on the MIME multipart format, with the request

metadata in JSON similar to the above but the binary data supplied as a separate MIME part. The JSON re-

sponse for an IE tool should be in the format presented in Figure 11. The response contains sets of annotations,

and, for each annotation, the start and end offsets are included together with any other available features.

Figure 11: JSON output

Detailed documentation and examples for all the different cases of requests and responses is available through

the ELG documentation64 and in D4.1.

64 https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html

European Language Grid
D2.6 ELG platform (final release)

ELG 33/52

Containerisation: The application should be containerised and the respective image should be uploaded into a

Docker Registry, such as the GitLab, DockerHub or Azure container registry and made accessible to anyone.
Docker images that are private (i.e., access is limited only to its owners) can also be deployed to ELG, by config-

uring the Kubernetes cluster with the respective credentials/access tokens. Three different options for the pro-

vision of LT tools are supported:

• LT tools packaged in one image: One Docker image is created that contains the application that exposes
the ELG-compatible endpoint.

• LT tools running remotely outside the ELG infrastructure: For these tools a proxy image is created that

exposes one (or more) ELG-compatible endpoints; the container communicates with the actual LT ser-
vice that runs externally, i.e., outside the ELG infrastructure.

• LT tools requiring an adapter: For tools that already offer an application that exposes a non ELG-com-

patible endpoint (HTTP-based or other), a second adapter image should be created that exposes an ELG-

compatible endpoint and that acts as proxy to the container that hosts the actual LT tool.

5.2.2 Kubernetes and Knative

All LT services are packaged as Docker images that follow the ELG specifications. The LT containers as well as

the core components of the platform (e.g., the catalogue backend) run in a k8s cluster within predefined
namespaces (e.g., for services, the "elg-srv" namespace). For security and isolation reasons, an LT provider can

request a dedicated namespace with restricted access for its services. For instance, LT services provided by Ex-

pert System run in the "elg-srv-expsys" namespace, with Docker registry credentials configured using the stand-
ard k8s "secret" mechanism. When an LT service is deployed using an adapter, the LT service and the adapter

containers are deployed in the same k8s pod65.

On top of k8s, we installed Knative66 to efficiently manage the workload of the various LT services and to avoid

draining of the available hardware resources. A substantial number of LT services are planned to be integrated
into the ELG platform, many of which require a significant amount of hardware resources (CPU and/or

memory). It is impossible to keep all of them up and running all the time. Knative addresses this issue by offer-

ing a scale-to-zero functionality; i.e., the number of running containers (replicas) of a certain LT service is scaled
down to zero for the time period that the service is not used by anyone. Also, Knative offers autoscaling func-

tionalities, i.e., when a user initiates a processing request for a service, knative receives this request and starts

the corresponding container (if replicas = 0) and forwards the request to it. Depending on the number of re-
quests for this service and based on the configuration, it spawns additional containers. An example of such a

configuration, for an MT service (French to English) created by Charles University, is given in Figure 12.

65 A pod is a group of containers deployed together on the same host. Containers within a pod share a common network stack and can
communicate with one another via the local loopback address 127.0.0.1
66 https://knative.dev

European Language Grid
D2.6 ELG platform (final release)

ELG 34/52

Figure 12: Knative configuration example

The "image" field specifies the location of the LT image, "containerport" defines the port where the ELG-com-
pliant REST service hosted in the container runs. The parameters "minScale" and "maxScale" define the mini-

mum and maximum number of replicas that can run for this service. "Concurrency" specifies a target number

of concurrent requests to be served by each replica of the LT container; a sustained load above this level will
cause additional instances of the container to be spawned, subject to the configured "maxScale" limit. The last

four fields specify hardware requirements/limitations for the containers that run for this LT service67.

5.2.3 LT Service Execution Server and External LT API

The LT Service Execution Server is responsible for orchestrating LT processing. This server is different from the
catalogue backend application. It implements all functionalities relevant to LT processing. In this way, we

achieve modularity and a clean separation of platform functionalities. The LT Service Execution Server provides:

• a client/connector for sending HTTP processing requests to and receiving HTTP responses from the

backend LT services;
• a mechanism for retrieving the k8s REST endpoint of an LT service; this endpoint is configured during

the registration of the service and is kept alongside other information in the respective database table;

• a mechanism for limiting access to LT services; i.e., for each registered ELG user68, we keep a daily usage
record containing the number of requests/calls that have been submitted to the LT service execution

server as well as the total size of these requests (in bytes); if the user exceeds the predefined limits/quo-

tas, execution is not allowed anymore;
• a common REST API used for calling an integrated LT service from the catalogue frontend or from the

command line;

• simple error handling, i.e., if something goes wrong during processing, an appropriate message is re-

turned to the client that initiated the process request.

Every service is available at a public URL of the same format69:

https://{domain}/execution/process/{ltServiceID}[?version={version}]

67 https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
68 When registering to the ELG platform, users must read and consent to the ELG Terms of Use, which inform them of their personal data
collected when interacting with the platform, and the broader policies of ELG with regard to GDPR (General Data Protection Regulation).
69 There is a separate convenience endpoint available for services that take "structured text" requests (e.g., text split into para-
graphs) to allow users to post plain text and have the execution server split it into segments, rather than having to segment it
themselves and build a JSON request.

European Language Grid
D2.6 ELG platform (final release)

ELG 35/52

{Domain} is the domain name of the deployed ELG platform (e.g., the production ELG domain name is "live.eu-

ropean-language-grid.eu"); {ltServiceID} is the id of the service that is being invoked and it is assigned during
the registration process and stored in the same database table as the k8s REST endpoint for the specific LT ser-

vice; the optional {version} parameter is used to select a specific version of the service if there are several to

choose from, if omitted then the latest available version is called. The request body may be a complete JSON
request as per the ELG specification, or it may be plain text, audio or image data (with the appropriate Content-

Type), which will be converted to the relevant API request type by the execution server. In the latter case any

other query parameters on the URL (apart from "version") will be forwarded to the LT service as part of the re-

quest JSON.

According to a typical execution scenario, a user visits the ELG platform, finds a tool (e.g., the ILSP Named En-

tity Recogniser for English) and goes to the respective resource landing page70. The landing page for services

includes two tabs that can be used for testing the service with a limited set of calls:

• The "Try out" tab is a specially designed GUI where users can provide a sample input and any parameter
values and see the results output by the service. Depending on the service type, they can type in or

paste some text, upload or record audio, or select one of the provider’s items of sample data if they

have supplied any in the service metadata. The results are rendered in a task-specific viewer.
• The "Code samples" tab provides the API endpoint and an example on how to call the service from a

user’s own code; at the moment, the examples provided are a "curl" command which can be copied and

executed locally, and code examples using the ELG Python SDK.

These testing functionalities are reserved for logged in users. In both cases, i.e., when the user clicks on the
"Process" button in the "Try out" GUI, or uses the curl command or Python SDK, a POST call, which contains the

input data as payload, is sent to the same REST endpoint of the LT Service Execution Server. The LT execution

server then communicates with the catalogue backend (via an appropriate endpoint) and checks whether this
user is allowed to call this service (based on the respective daily usage/quotas). If access is granted, the cata-

logue returns the HTTP k8s endpoint of this service. Then, it uses the respective client/connector to generate a

request to the endpoint; the request is received from Knative and forwarded to the appropriate container. If
there are no available containers up and running for the specified LT service, Knative spawns a new one before

forwarding the request (see Section 5.2.2). The response with the output results of the LT service container is

returned back to the LT execution server which returns it to the client (try out GUI or curl) that initiated the

call.

As described above, only registered users can access the LT service execution server; a first layer of authentica-

tion is achieved by using oauth2-proxy71, an intermediary that is able to validate the JSON Web Token (JWT)

credentials issued by the Keycloak Identity and Access Management server. The oauth2-proxy container runs72
in the ELG cluster, and the nginx ingress controller consults oauth2-proxy when it receives a request destined

for the LT execution server. Only requests that contain a valid token are permitted to pass through to the ac-

tual LT execution server, where the authorisation is performed as described above when the execution server

forwards the token to the catalogue to check the user’s permissions and quota.

70 https://live.european-language-grid.eu/catalogue/tool-service/480
71 https://github.com/oauth2-proxy/oauth2-proxy
72 A separate Keycloak client was created for oauth2-proxy, see Section 3.2 for more information.

European Language Grid
D2.6 ELG platform (final release)

ELG 36/52

The LT service execution orchestrator is implemented in Java using Spring Boot. Spring Boot was selected be-

cause it (a) facilitates application configuration, (b) allows the creation of a consolidated standalone application
which can be easily containerised and deployed, (c) provides an easy way to create REST services, and (d) pro-

vides easy integration with a large number of tools and libraries (e.g., databases or messaging middleware).

5.2.4 LT Service Helper Services

The ELG platform also includes additional components that are "helper" services available for use by LT service
containers. The most important of these is the Temporary Storage service, which provides a mechanism for LT

services to return types of output data to the user that cannot be readily represented in the standard JSON re-

sponse formats. An LT service may POST arbitrary data to the storage service at a known fixed URL resolvable
only within the ELG cluster (http://storage.elg/store) and will receive in response a publicly-resolvable un-

guessable URL from which the same data can be retrieved for the next few minutes or hours. This URL can be

returned to the caller as part of a standard API response. For more detail on this service see deliverable D4.3.

5.3 ELG Platform Management and Support Services
Apart from the ELG basic/core services (e.g., catalogue, CMS and LT services execution) there are also modules

that (a) manage users and control access, (b) monitor the whole software stack, (c) gather/generate reports

(analytics) for the usage of the ELG platform and resources, and (d) facilitate licensing and billing. These mod-

ules are presented in the sections that follow.

5.3.1 User Management

The user management and authentication module is based on Keycloak, an open source identity and access

management solution. Its adoption relieves us from the need to design and implement login and registration

forms, to create and maintain mechanisms for issuing and distributing access tokens etc.

Many catalogue functionalities do not require authentication (e.g., search, view resource via the catalogue UI);

however, some functionalities, such as LT service execution, are provided only for registered users. In these

cases, users are redirected to a Keycloak page in order to log in to their account by providing the appropriate
credentials. Once logged in, they acquire an access token (in JWT format) and they are redirected back to the

catalogue frontend; the token keeps them logged in (for some time). However, a JWT token expires after a

time period, the expiration time is configurable and is specified in the Keycloak server; this means that the user
must re-authenticate. To avoid this situation we use refresh tokens, which are tokens that are issued to the

user by Keycloak and are used by a client (e.g. frontend) to obtain in a way transparent to the user a new JWT

access token when the current token expires.

A key concept in Keycloak is the realm, i.e., a dedicated domain that consists of a specific set of users, clients,
security policies, access roles etc. Using Keycloak’s administration console, we have created a realm dedicated

to ELG, and registered the required clients under it. A client is the only way for an application (e.g., the cata-

logue frontend) to use and access Keycloak. We created a "catalogue frontend" client and defined the roles de-
scribed above, i.e., those of Consumer, Provider, Metadata validator, Technical validator, Legal validator, Ad-

ministrator and Content Manager (see Section 4.3).

Currently, as already described in previous sections, granting advanced roles for registered users of the plat-

form is a procedure supervised by the administrators. For instance, to become a provider, a user must request

this via the user profile and the request is assessed by an ELG administrator.

European Language Grid
D2.6 ELG platform (final release)

ELG 37/52

User authentication is managed by Keycloak, while user authorisation and assignment of the appropriate ac-

cess level to a resource or functionality is controlled by a specific set of modules implemented as part of the
catalogue backend. These catalogue modules must know which roles are assigned to each user. Given that

roles are managed in Keycloak and may change at any time, an interaction layer between the two systems is

required. For example, as described above, a user applies for the provider role; the application is processed by
one of the administrators; if the request is approved, the administrator uses Keycloak’s admin pages to assign

the role to the user in question. This change of user roles must be communicated from the Keycloak system to

the catalogue backend user module at real time, so that the user is granted the appropriate rights when she
logs in to the system. In addition, for specific tasks, the catalogue backend requires access to user information

kept in Keycloak, which may also change at any time (e.g., when a user's profile is updated). A typical use case

is that of sending notification emails to users, e.g., when a metadata record is submitted for publication, which
involves accessing the user's name, surname and email. To solve the syncing issue we have developed a Key-

cloak plugin that notifies the catalogue backend via an appropriate REST service for any addition or change73.

5.3.2 Monitoring and Analytics

In this subsection we present the modules used for observing the performance of LT processing services to en-

sure they function properly, and for recording the usage of LRTs included in the ELG platform.

5.3.2.1 Monitoring of the LT processing services

Monitoring of the LT services consists of testing the ELG services on a regular basis, collecting the results of the

tests, and, finally, displaying everything on a monitoring interface. These three different steps correspond to

three separate services running on separate pods inside the Kubernetes cluster.

The service testing is carried out by a server created with Flask74 (a well-known web-application framework)

which calls every service using the Python SDK (Section 6.2). It collects three metrics (success or failure, re-

sponse or error message, request time) for each service call and pushes them to the Prometheus75 server. Pro-
metheus is the service that gathers metrics (from the services monitoring but also metrics from the Kubernetes

cluster) and stores them in databases. To visualise the metrics being collected, we finally use Grafana76.

Grafana is accessible from outside the Kubernetes cluster77 in order to make monitoring metrics accessible to

the ELG team.

Two dashboards are currently available on Grafana. One provides an overview of the status (working or not) of

the ELG services, and a second one, that is service-specific, visualises metrics related to this service (Figure 13).

73 https://gitlab.com/european-language-grid/ilsp/Keycloak-events-notifier
74 https://palletsprojects.com/p/flask/
75 https://prometheus.io
76 https://grafana.com
77 https://live.european-language-grid.eu/monitoring/

European Language Grid
D2.6 ELG platform (final release)

ELG 38/52

Figure 13: Screenshot of the service-specific Grafana dashboard

5.3.2.2 Catalogue usage analytics
The catalogue backend implements a statistics/analytics module for collecting usage information. Currently,

the information collected includes the overall number of views for a given metadata record and number of

downloads/times used for a resource. User-specific actions are also tracked; these pertain to the downloads

and service executions performed by a user.

For user downloads the information collected includes:

• username (if logged in);

• licence attached to the downloaded resource;

• date/time of download;
• relevant metadata record identifier;

• relevant distribution identifier;

• calling client type.

Service execution statistics include

• username;
• service name;

• execution start date/time;

• execution end date/time;
• number of bytes processed;

• execution status (succeeded/failed);

• calling client type.

Statistics tied to individual published metadata records include:

• count of views;
• count of downloads of the resource attached to the record

• count of times used for ELG-compatible services.

European Language Grid
D2.6 ELG platform (final release)

ELG 39/52

It should be noted that in the case of metadata records with multiple versions, the counts for each version are

kept separately, but the snippet on the catalogue page accumulates the counts for all versions, given that only

the latest version is displayed in the catalogue.

5.3.3 Licensing and Billing Module

The ELG platform includes the appropriate mechanisms that support the consumption of resources and ser-

vices that are available without commercial restrictions. More specifically:

• It supports the download of resources under the condition that they are offered without charges with
open access licences or with restrictive licences that require only user authentication and, optionally,

formal consent to the licensing terms. Appropriate technical safeguards are implemented to ensure that

access to LRTs is granted in accordance with any of the above licensing terms; for instance, access to
LRTs distributed with restricted licences is made available only to those users that fulfil the criteria spec-

ified in the licences.

• for LT services, only the trial functionality is available and only for registered users (with quotas as de-

scribed in 5.2).

In R3, we have also worked on a prototype billing module that will enable the ELG platform to offer resources

and services distributed with commercial licences. The module should implement a well-defined billing strategy

for the ELG platform and for the LRTs it makes available78.

The billing module should ensure security and include various services, such as handling subscriptions, pay-
ments, pricing, taxes, emails, ensuring customer satisfaction and conformance to all EU and national laws. Fur-

thermore, in order to provide users with a complete solution, it is necessary to offer several functionalities,

such as checkout pages, self-service after the payment, cancelation, subscription changes, etc. In order to pro-
vide a full and appropriate solution, we have carefully considered various options, starting with developing a

full solution from scratch to adopting a commercial platform which meets the needs of the platform and the

application scenarios. The evaluation activities concluded with the choice of the existing online commercial
platform Chargebee79. Deliverable D3.4 provides detailed information about the decision-making process, re-

quirements analysis and a description of the Chargebee functionality.

The choice of a commercial platform brings more attention to the integration architecture and the data flow

between the ELG platform and the external billing solution. Figure 14 illustrates the workflow; yellow boxes are
components and processes provided by the selected billing platform while the other boxes constitute part of

the ELG platform.

78 For a discussion on the strategy, see Deliverable D7.4.
79 https://www.chargebee.com

European Language Grid
D2.6 ELG platform (final release)

ELG 40/52

Figure 14: Billing workflow between ELG and Chargebee platforms

The components of the platform that are part of the billing workflow and processes are as follows:

• The ELG platform includes ELG-compatible services and hosted resources that are available with differ-

ent licensing terms; some can be used for free, while others are commercial products, and their provid-
ers may wish to offer them with commercial licences. In this case the provider may want some compen-

sation for the usage of their services/resources, in which case the relevant pricing details must be doc-

umented for them. For these services/resources, additional execution and administrative costs may be
charged by ELG, which are calculated on top of the provider's requested price, and sum up to the final

price of the service/resource. Information about the commercial product plans and final prices goes to

the online billing solution.
• The Chargebee catalogue contains all monetarised products and plans, and their prices. The relation-

ship between the ELG catalogue products and the Chargebee catalogue is not necessarily one-to-one;

i.e., Chargebee can contain paid plans that allow the use of multiple products from the ELG catalogue,
or the download of multiple resources. The relation between the two catalogues depends on the ELG

business strategy.

• The Chargebee billing platform is the central online billing point, through which ELG administrators can
configure the billing process. The platform includes various integration points with external systems (in

our case, the ELG platform) which can be configured. The first integration point is the Checkout pages,

which is used to get the purchaser onboarded, and the last one the webhooks, that can inform the ELG
platform (i.e., catalogue backend) about the events that took place in the Chargebee platform.

• Chargebee purchases: all transactions, subscription changes, logs, billing information, subscription data

and similar information are stored at the Chargebee side, i.e., an external database living outside ELG.

European Language Grid
D2.6 ELG platform (final release)

ELG 41/52

Any information needed from Chargebee can be synchronised through the webhook functionalities. For

the ELG platform, this information includes: the user (identified by email address) that has performed
an action through a subscription plan and/or a purchase, the action performed, the billing plan to which

the user subscribed, any actions that were canceled (by the user or because the payment was unsuc-

cessful), any other changes in the subscription information. The webhook sends this information with
HTTP Post to the ELG Backend so it can register changes in the ELG system.

• ELG LT Service Executor: when the consumer requests to execute a service, the service executor (de-

scribed in Section 5.2) asks the Catalogue Backend if the user has the right to access this service and,
depending on the answer, blocks this request or allows the execution of the LT service.

• ELG Catalogue Backend/Quota module: it can determine if the user service call is allowed based on the

metadata record of the service and information about the user’s subscription plans, synchronised with
the external Chargebee platform.

• The Chargebee Sales Management (Figure 15) forms part of the billing platform; the account managers,

user helpdesk, accountant, business specialists can log in and manage client subscriptions, data, pay-

ments, generate reports, export data to be used in other systems, such as the accounting software.

Figure 15: Chargebee subscription management window

6 ELG Platform Access Methods

As described in previous sections, the ELG platform exposes several REST APIs that offer functionalities for (a)

browsing and searching the catalogue, (b) creating, updating and retrieving metadata records, (c) executing
services, (d) downloading resources, etc. We provide two ways to our users for accessing the ELG platform, a

web-based UI and a Python package. Both ways make use of the offered REST APIs, however, the web UI offers

access to all functionalities implemented in the backend, while the python package offers only a subset of them

(e.g., dashboard and metadata editing functionalities are not offered via SDK).

6.1 Access through the Website
The ELG frontend consists of

• the "website" pages, maintained in the Drupal CMS and providing information on the LT domain and

activities, the ELG project, etc., and

European Language Grid
D2.6 ELG platform (final release)

ELG 42/52

• the platform UIs that enable users to interact with the platform components, i.e., the ELG catalogue

(e.g., search, view metadata, upload), the ELG metadata editor for documenting and registering content,
and the user dashboard that supports ELG users in accessing and managing their metadata records and

resources.

Deliverables D3.2 – D3.3, which are dedicated to the ELG User Interfaces, provide a detailed account for the

ELG platform frontend together with a description of the ELG website and the choices made for implementing
it. In order to give an overview of the ELG platform that is as complete as possible, we provide an abridged de-

scription of the platform’s different interfaces.

6.1.1 Catalogue User Interface

The catalogue UI is implemented as a Single Page Application (SPA), which provides fast page updates instead
of unnecessary full page reloads. All functionalities are built using React80, a JavaScript library for the develop-

ment of user interfaces; the implementation details are presented in Deliverables D3.2 - D3.4.

The final release of the ELG platform offers the following functionalities via the catalogue UI.

• Browse: The browse/search page (Figure 15) provides a list of all published entries of the ELG catalogue

(e.g., LT tools/services, corpora, models, organisations, etc.) accompanied with a snippet of the descrip-
tion of each entry, a set of tags that have been identified as useful for consumers (e.g., for LRTs, lan-

guages, keywords and licences), popularity indicators (number of views and downloads/usage) and spe-

cific flags that indicate whether the resource is uploaded at ELG or an ELG-compatible service.

Figure 16: Browse/Search page of the ELG catalogue

80 https://reactjs.org

European Language Grid
D2.6 ELG platform (final release)

ELG 43/52

• Search: A user enters a keyword or phrase (Figure 16) in a search box and the application narrows down

the results dynamically; the minimum number of characters a user has to type to refine the search re-

sults is set to four. The search is performed on the indexed metadata elements (Section 5.1.3).

Figure 17: Free text search

• Faceted search: Users can filter the full catalogue contents or previous search results by selecting values

from the facets on the left side of the browse/search page (Figure 15). The facets have been selected

based on user preferences (see D3.1). Facets and free text search can be combined in order to refine
search queries and support users in easily finding the resources they desire. Accordions are used to

collapse the facets so that they are all visible at once, while facets with long lists of values (e.g., lan-

guages, service functions, licences) are endowed with a simple string-based lookup functionality to help
users easily find the values they seek for.

• View published items: By clicking the title of an item, users can view their full description; Figure 17

displays the landing page of a tool/service. Landing pages have been implemented for all LRT types as
well as for Organizations and Projects. The design of the landing pages takes into consideration user

preferences (see D3.1), design and accessibility considerations and the ELG metadata schema. As de-

scribed in more detail in D3.3 – D3.4, the information is grouped in semantically similar sets and organ-

ised in tabs and specific areas of the page layout.

European Language Grid
D2.6 ELG platform (final release)

ELG 44/52

Figure 18: Landing page of an ELG-compatible service

• Download resources: All users can download resources directly from the ELG storage system in accord-

ance with their licensing terms. Downloading is offered via the Download tab, which displays all distri-

butions of a resource and information on the licensing (and in the future also billing) conditions for each
of them.

• Try out LT services: An important benefit for ELG platform users is that they can test the ELG-compliant

LT services via pages called "Try out" UIs. This feature is currently reserved for registered users (see
Section 5.3.1). The "Try out" UIs are separate HTML pages that use JavaScript code and are embedded

as iframes81 in the catalogue UI. They are responsible for sending and receiving data to and from the LT

execution server and for visualising the processing execution results82. Figure 18 shows an example. Of
course, the "Try out" tab is provided only for those services that are integrated into the ELG platform;

this information is provided by the ELG backend. The ELG backend also provides the LT service execution

endpoint while the access token that is required is retrieved from the user’s active Keycloak session.

81 https://www.w3schools.com/tags/tag_iframe.asp
82 The "Try out" UIs run in containers that are deployed in the same cluster as all the other ELG components.

European Language Grid
D2.6 ELG platform (final release)

ELG 45/52

Figure 19: Try out GUI

• Validate metadata descriptions: Users with the "provider" role can validate their metadata records

against the ELG schema, before registering them in the ELG platform; appropriate validation errors are

provided to the user.
• Upload metadata descriptions: Users with the "provider" role can upload metadata descriptions of their

resources in XML format compliant with the ELG schema. If the metadata file is valid, the user receives

a "success" message; if it’s invalid, the validation errors are aggregated and returned in a single message.
• Describe items with the interactive editor: For the ELG metadata editor, we have designed and imple-

mented forms that enable users to formally describe their resources in compliance with the ELG

metadata schema (Figure 19). Since the schema is rich , we attempt to meet the needs of our users by
offering a full-fledged UI that supports easy metadata creation/editing. As a result, we refrain from using

overwhelming long forms; instead, we have adopted a more interactive design based on the organisa-

tion of the elements along a natural workflow split across multiple steps. The design of the editor takes

into account user needs and preferences (see D3.4).

European Language Grid
D2.6 ELG platform (final release)

ELG 46/52

Figure 20: Editor form for corpus

• Dashboard: To support users in accessing and managing the catalogue items and performing the actions

that are allowed depending on their user role, we make use of a dashboard, which in ELG we call "grid"

(Figure 20). The grid is the central point through which all users have access to resources and actions,
depending on their role. Although the look and feel is the same across user roles, the actions and menu

items differ depending on the user role. In this release, we have added functionalities on the provider's

grid, and we also implemented the validator's and the consumer's grid.

European Language Grid
D2.6 ELG platform (final release)

ELG 47/52

Figure 21: My grid

• Dashboard catalogue pages: All users access and manage the metadata records through dedicated cat-
alogue pages, which function as a focused version of the catalogue, this time filtering records according

to each user’s role. These pages implement browse and search functionalities like the main catalogue

page. For instance, providers can view the metadata records they have created through the "My items"
page (Figure 21) and perform on them the following actions: edit or update a metadata record, submit

it for publication, delete a metadata record, upload content files to a metadata record, and replace the

content files that have been uploaded.

Figure 22: My items

• Validation and service registration pages: Validators have access to the metadata records that have

been assigned to them for metadata, legal and/or technical validation through the "My validation tasks"

European Language Grid
D2.6 ELG platform (final release)

ELG 48/52

page. In addition, technical validators of ELG-compatible LT services have access to the LT service regis-

tration forms.
• Administration pages: Access to the administration pages, implemented with Django as a separate ap-

plication, is available only for authorised users (the platform administrators and content managers) via

a top-level menu.

6.1.2 Integration with the Website
The current entry point for all users of the ELG (production) platform is https://live.european-language-grid.eu.

This page brings together the website part and the catalogue. Access to the catalogue is available through the

"Search" button.

The catalogue UI and the ELG website are implemented as two different applications serving different pur-
poses; however, the integration of the two systems is required for some functionalities. For instance, when a

user enters a search query in the website’s search field and presses the "Search" button, they are redirected to

the catalogue UI where the results of the query are displayed.

In addition, a common "look and feel" is adopted by both applications. The catalogue UI follows the overall de-
sign concept of the ELG website and corporate identity to achieve this. Consequently, they both share a similar

page layout, with common header and footer sections, and menu items. To integrate these sections, they both

consume a REST API provided by the CMS. This API provides the information about which links should be dis-
played and which links should be enabled and disabled. Finally, both applications make use of common UI

frameworks (Google Material design), common icons, fonts and colours.

6.2 Python SDK Toolkit
In the framework of ELG, we have developed a Python SDK toolkit to allow users to use ELG through the Python
programming language. The result is a pypi package83 installable using the package installer for Python (pip).

The ELG Python SDK provides access to most ELG functionalities through Python. It provides access to the cata-

logue of resources with methods that allow users to search the catalogue and look for corpora, services, and
organisations. The Python SDK enables users to call functional services available in ELG, and even to combine

them using a simple pipeline mechanism. In addition to given access to the features of the ELG user interface in

Python, the ELG Python package also provides new ones: helper tools to create an ELG compatible service from
a Python-based tool and to deploy ELG services locally. We chose Python for the first ELG toolkit as it is the

leading coding language for NLP and Data Science projects. The Python SDK’s functionalities are detailed below.

6.2.1 Browsing the Catalogue

The SDK enables access to the ELG catalogue. It uses the same filters as the UI, i.e., it is possible to filter for the
type of resource or LT service, languages, and licence type; free text search can also be used. Figure 22 shows

how to search for an English to French MT service. The result is returned as a list of entities where each entity

is a Python object that encapsulates the information about the respective ELG resource.

83 https://pypi.org/project/elg/

European Language Grid
D2.6 ELG platform (final release)

ELG 49/52

Figure 23: Python SDK Catalogue code example

6.2.2 Interaction with the Resources
This section presents the main actions that can be performed with the Python SDK when interacting with re-

sources (downloading ELG hosted resources, creating and running an ELG-compatible service).

6.2.2.1 Obtain an ELG Access Token

In a typical scenario when users attempt to access the ELG platform via the Python SDK, they are redirected to
the ELG web interface and asked to enter their login credentials; from this procedure, a JWT token is acquired

which keeps them logged-in in order to be able to interact with the platform (see Section 5.3.1). The ELG Py-

thon SDK manages authentication based on the Authentication class which communicates with the Keycloak
server to obtain Bearer JWT tokens for the specified user. JWT tokens expire after a time period and users have

to provide again their credentials. To avoid this, we implemented utility methods that keep users authenticated

in a transparent way by using the Keycloak’s refresh token mechanism (see Section 5.3.1).

6.2.2.2 Download ELG Corpora
The Python SDK has a Corpus class that corresponds to a corpus or dataset. It can be initialised using the identi-

fier of the resource. If the resource is stored in ELG, it can be downloaded using the download method of the

Corpus class. Figure 23 shows how to search for a corpus of German that includes the term "ner" in the indexed

elements.

Figure 24: Python SDK Corpus code example

6.2.2.3 Call ELG-compatible Services

The Service class of the Python SDK is very important as it allows users to call ELG services and so to integrate

ELG services in Python workflows. It also uses features that simplify the use of services. For example, as men-
tioned previously, the JWT access tokens are updated automatically (refresh token), the input provided to the

service can be either a text or a file, the call can be synchronised or not. The service can be initialised using its

ELG id, as shown in Figure 24, or using the result of a catalogue search.

European Language Grid
D2.6 ELG platform (final release)

ELG 50/52

Figure 25: Python SDK Service code example

6.2.2.4 Create an ELG-compatible Service

The Python SDK includes helper tools to create an ELG compatible service from a Python-based tool. First, the

package provides two Python classes that can be extended to create a simple HTTP server that exposes an ELG
compatible endpoint of the LT tool. Secondly, the ELG Python package comes with a CLI that helps with the cre-

ation of the Docker image. The ELG documentation includes a complete tutorial on how to create an ELG com-

patible service using the ELG Python.84 With this feature of the Python package, we seek to facilitate as much
as possible the creation of an ELG-compatible service from a Python LT tool. Moreover, the services created

using the Python helper tools use the best practices to create the endpoint and the Docker image. It makes the

services deployed in the ELG infrastructure efficient and secure which is valuable from the ELG point of view.

6.2.2.5 Deploying ELG Services Locally
ELG provides the possibility to call the services deployed in the ELG cluster, using the GUI, or using the API.

However, for some cases, it is needed to deploy ELG services locally, e.g., call services without access to inter-

net, make more calls than allowed by ELG, test services not already deployed in the cluster, etc. The Python
SDK comes with a command line interface (CLI) that helps to deploy and test ELG-compatible services locally by

automatically generating the configuration files to deploy all the needed ELG core components: LT execution

server, UI, i18n resolver, temporary storage, in addition to the services themselves. All the ELG core compo-
nents are published as multi-arch images and therefore can run on different types of processor architecture

like x86_64 (e.g., intel) or arm64 (e.g., M1 macs or AWS Graviton2), however, the LT services only have to run

on the x86_64 architecture (the one used in the cluster) and might therefore not be deployable on all hard-

ware. In addition, to be deployed locally, an LT service needs to be public and have a license that allows it.

The local installation of the services is based on Docker Compose85. The Python SDK generates the docker-com-

pose.yml file in addition to all the configuration files automatically, and the users only have to start the applica-

tions by running "docker-compose up". The Python SDK covers different local installation setups. It is possible
to deploy locally ELG-compatible services deployed in the grid or ELG-compatible services not already deployed

in the grid using only the Docker image and the execution location. Also, it is possible to deploy the GUI to in-

teract with the services deployed locally directly from the browser.

To deploy a single service with the GUI, users only have to run the following command:

> elg local-installation ids 9192

This will generate all the files to deploy the LT execution server, the test UI, the i18n resolver, and the service
with the id 919286 which is a MT service. Once started using "docker-compose up", the service can be called

locally using the API endpoint exposed by the LT execution server or using the GUI (see Figure 25).

84 https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/TutoServiceIntegration.html
85 https://docs.docker.com/compose/
86 https://live.european-language-grid.eu/catalogue/tool-service/9192

European Language Grid
D2.6 ELG platform (final release)

ELG 51/52

Figure 26: Screenshot of the local installation GUI

7 Conclusions

In this deliverable we present the final release of the ELG platform. Users can browse through the catalogue,

search for specific LT services and resources, view them, test LT services, and download resources with open
licences through graphical UIs or a Python SDK toolkit. Providers can describe and integrate LT services or up-

load data resources into the platform with an interactive editor, as well as an upload functionality of metadata

records. They can also manage their records via their dashboard. Validators have access to their assignments
and can perform their tasks through their own dashboard. The APIs required for the execution of LT services,

and the interaction with the platform have all been implemented. The publication lifecycle is fully supported

and a system for the assignment of persistent identifiers for resources under the control of ELG is soon to be
integrated. A billing prototype showcasing the potential of the ELG acting as a marketplace for commercial ser-

vices and resources has been developed. Bridges to other infrastructures and catalogues have been setup

through standard protocols as well as APIs and customised solutions.

8 References

Penny Labropoulou, Katerina Gkirtzou, Maria Gavriilidou, Miltos Deligiannis, Dimitris Galanis, Stelios Piperidis,
Georg Rehm, Maria Berger, Valérie Mapelli, Michael Rigault, Victoria Arranz, Khalid Choukri, Gerhard Backfried,

José Manuel Gómez Pérez, and Andres Garcia-Silva. "Making Metadata Fit for Next Generation Language Tech-

nology Platforms: The Metadata Schema of the European Language Grid". In Nicoletta Calzolari, Frédéric Bé-
chet, Philippe Blache, Christopher Cieri, Khalid Choukri, Thierry Declerck, Hitoshi Isahara, Bente Maegaard, Jo-

seph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the 12th Language Re-

sources and Evaluation Conference (LREC 2020), Marseille, France, 2020. European Language Resources Associ-

ation (ELRA).

European Language Grid
D2.6 ELG platform (final release)

ELG 52/52

Georg Rehm, Maria Berger, Ela Elsholz, Stefanie Hegele, Florian Kintzel, Katrin Marheinecke, Stelios Piperidis,

Miltos Deligiannis, Dimitris Galanis, Katerina Gkirtzou, Penny Labropoulou, Kalina Bontcheva, David Jones, Ian
Roberts, Jan Hajic, Jana Hamrlová, Lukáš Kačena, Khalid Choukri, Victoria Arranz, Andrejs Vasiļjevs, Orians An-

vari, Andis Lagzdiņš, Jūlija Meļņika, Gerhard Backfried, Erinç Dikici, Miroslav Janosik, Katja Prinz, Christoph

Prinz, Severin Stampler, Dorothea Thomas-Aniola, José Manuel Gómez Pérez, Andres Garcia Silva, Christian
Berrío, Ulrich Germann, Steve Renals, and Ondrej Klejch. "European Language Grid: An Overview". In Nicoletta

Calzolari, Frédéric Béchet, Philippe Blache, Christopher Cieri, Khalid Choukri, Thierry Declerck, Hitoshi Isahara,

Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the
12th Language Resources and Evaluation Conference (LREC 2020), Marseille, France, 2020. European Language

Resources Association (ELRA).

