| | EUROPEAN
| | LANGUAGE
GRID

D3.2
Platform GUI

(initial release)

Andis Lagzdins$ (TILDE), Uldis Silins (TILDE), Jalija Me|nika (TILDE),
Penny Labropoulou (ILSP), Athanasia Kolovou (ILSP), Dimitris Galanis (ILSP)

Authors:

Dissemination Level: Public

Date: 31-03-2020

European Language Grid
D3.2 Platform GUI (initial release)

flI'ELG

About this document

Project
Grant agreement no.
Coordinator

Start date, duration

ELG — European Language Grid

825627 — Horizon 2020, ICT 2018-2020 — Innovation Action
Dr. Georg Rehm (DFKI)

01-01-2019, 36 months

Deliverable number

Deliverable title

D3.2

Platform GUI (initial release)

Type

Number of pages
Status and version
Dissemination level
Date of delivery

WP number and title

Task number and title

Other

26

Final —Version 1.0

Public

Contractual: 31-03-2020 — Actual: 31-03-2020

WP3: Grid Platform — Interactive interface and Information System

Task 3.2: Design, development and deployment of ELG front-end
Task 3.3: Set up and maintenance of CMS for the ELG

Andis Lagzdin (TILDE), Uldis Siling (TILDE), Jalija Melnika (TILDE),

Authors Penny Labropoulou (ILSP), Athanasia Kolovou (ILSP), Dimitris Gkoumas (ILSP)
Reviewers Jan Haji¢ (CUNI), Jana Hamrlova (CUNI),

Victoria Arranz (ELDA), Khalid Choukri (ELDA)
Consortium Deutsches Forschungszentrum fir Kiinstliche Intelligenz (DFKI), Germany

Institute for Language and Speech Processing (ILSP), Greece

University of Sheffield (USFD), United Kingdom

Charles University (CUNI), Czech Republic

Evaluations and Language Resources Distribution Agency (ELDA), France
Tilde SIA (TILDE), Latvia

Sail Labs Technology GmbH (SAIL), Austria

Expert System Iberia SL (EXPSYS), Spain

University of Edinburgh (UEDIN), United Kingdom

EC project officers

Philippe Gelin, Alexandru Ceausu

For copies of reports and other
ELG-related information,

please contact:

ELG

DFKI GmbH

European Language Grid (ELG)
Alt-Moabit 91c

D-10559 Berlin

Germany

Dr. Georg Rehm, DFKI GmbH
georg.rehm@dfki.de

Phone: +49 (0)30 23895-1833
Fax: +49 (0)30 23895-1810

http://european-language-grid.eu
© 2020 ELG Consortium

2/26

European Language Grid
D3.2 Platform GUI (initial release)

Table of Contents

flI'ELG

List of Figures 4
List of Acronyms 5
1 Introduction 6
2 Front-end Architecture Overview 6
3 Central Portal 7
3.1 Technical Description 7
3.2 Functionality and Web Interfaces 10
4 Content Management System 11
4.1 Technical Description 11
4.2 Functionality and Web Interfaces 12
5 Catalogue Ul 15
5.1 Technical Description 15
5.2 Functionality and Web Interfaces 16
5.2.1 Catalogue Browse and Search Page 17
5.2.2 Landing Page for Items 19
6 Authentication Solution 23
6.1 Technical Description 23
6.2 Functionality and Web Interfaces 24
7 Conclusion 26
ELG 3/26

European Language Grid
D3.2 Platform GUI (initial release)

List of

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10. Editing a menu type
Figure 11. Menu items received as a JSON object through REST
Figure 12. Menu permission mechanism
Figure 13. Performance metrics
Figure 14. List view of catalogue contents
Figure 15. Card view of catalogue contents
Figure 16. Header area of the catalogue page
Figure 17. Header for an organization with the organization logo
Figure 18. Header for an organization with default icon
Figure 19. Main section of a corpus
Figure 20. Landing page for an Organization
Figure 21. Landing page for a tool/service
Figure 22. Landing page for a project
Figure 23. Bottom content area for resources
Figure 24. Tabs for functional services
Figure 25. Test/Try out tab for a sample ASR service
Figure 26. Login form
Figure 27. New user registration form
Figure 28. Password recovery form

Figure 29. Keycloak user profile form

ELG

Figures

GUI architecture overview

flI'ELG

Angular application life cycle

Visual Studio Code

Using the same design and style elements in the different solutions

New homepage

10

11

CMS life cycle

12

Landing page in the CMS

13

Header and Footer menus

13

Menu link editing

13

14

14

15

16

18

18

18

19

19

20

20

21

22

22

23

23

24

25

25

26

4/26

European Language Grid
D3.2 Platform GUI (initial release)

List of Acronyms

API Application Programming Interface
CMS Content Management System
Css Cascading Style Sheets
ELG European Language Grid
GPL GNU General Public Licence
GUI Graphical User Interface
HTML Hypertext Markup Language
JWT JSON Web Token
LT Language Technologies
MVP Minimum Viable Product
POS Part of Speech
REST Representational State Transfer
SEO Search Engine Optimisation
SME Small and Medium Size Enterprises
SPA Single Page Application
SSR Server-Side Rendering
ul User Interface
URL Uniform Resource Locator
UX User Experience
W3C World Wide Web Consortium
WCAG Web Content Accessibility Guidelines
WYSIWYG What You See Is What You Get
ELG

flI'ELG

5/26

European Language Grid |||” E LG

D3.2 Platform GUI (initial release)
1 Introduction

This deliverable outlines the state of development of the ELG platform graphical user interface (GUI). The most

recent GUI interface, i.e., the current live system, is available at https://live.european-language-grid.eu.

The structure of this document is as follows: after the introduction (Chapter 1), we provide a short overview of
the front-end architecture (Chapter 2), which includes all developed solutions and illustrates their interaction
through a diagram. Chapters 3, 4, 5,and 6 describe the specific GUI solutions, i.e., the central portal, the CMS,
the catalogue Ul, and the authentication solution. For each solution we provide a technical description,

including implementation details, functionality and web interface descriptions as well as screenshots.

This report has two follow-ups: Deliverable D3.3 (due in M26) and Deliverable D3.4 (due in M34).

2 Front-end Architecture Overview

A Graphical User Interface (generally referred to as GUI or front-end) communicates with end-users and clients.
It is crucial to provide the best possible solution not only from a usability and information architecture point of
view but also from a technological perspective. Search engines and information sharing in social networks are
essential for the European Language Grid to attract more attention and visitors, which is why the technical

solution must support both aspects in the best possible way.

The consortium includes several distributed teams bringing with them different software development
backgrounds. The ELG GUIs are developed by fulfilling various tasks and timelines. This challenge must be taken
into consideration when finding a good balance for the development process in terms of providing a unified
look and feel and, at the same time, enabling the different teams to use their preferred approaches. With the
objective of creating one integrated GUI platform for end-users, search engines and social media agents
(content scrapers), a dedicated architecture was devised and implemented. It provides a professional user

experience and is suitable for distributed development teams and processes.

Figure 1. GUI architecture overview

ELG 6/26

European Language Grid l ||f|
D3.2 Platform GUI (initial release) l E LG

The front-end architecture consists of the following independent software solutions (Figure 1):

ELG front-end/Central Portal —the central entry point of the European Language Grid.
CMS — provides back-office functionality for static content management.
Catalogue Ul — for searching, opening, executing LT services, data, projects and other content.

Authentication service — an authentication service shared across all GUIs and back-end services.

LA A

Trial GUIs — multiple small Uls to enable end-users to try out specific LT services.

Both Drupal® (CMS) and Keycloak? (authentication solution) provide their functionality across different GUI
solutions. The CMS shares the design and content information that is reused in different GUI parts, while the
authentication solution provides centralized user management and a single sign-on capability to ensure smooth

switching between different GUI platforms.
Figure 1 also shows that the CMS shares different assets to all GUIs:

1. Training materials — this section will mainly be dedicated to the central ELG front-end. Users with the
appropriate rights are able to upload and manage training materials in various formats, e.g., HTML and
PDF files as well as images. These materials will be published by the central portal, but if needed can
be also published using the catalogue Ul.

2. Page content as HTML — these HTML documents or pages will also be published on the central ELG
portal, e.g., content for the entry page, contacts etc.

3. Menus —all menus are stored and managed in a central manner, every GUI can access them and
download them in JSON format using REST API.

4. Stylesheets — the CMS is used as a central point for storing the ELG designs used in various parts of the
GUI, also in LT service-specific try out Uls. These stylesheets are provided as CSS files.

5. Design elements —the CMS is also used to store design elements such as images, fonts and logos.

3 Central Portal

3.1 Technical Description
The central entry point of the ELG is served by a single page application (SPA), which is built using Angular®. This

software retrieves content from the CMS, redirects the user to the catalogue, and allows the user to login.

Figure 2 describes how the Angular application development process is organised. The Angular front-end
developers upload their code repository to the cloud platform Azure DevOps*. After that, an Azure Pipeline® is
automatically triggered that pulls the source code for the Angular application, adds configuration values,
builds, tests, and tags Docker® images, and finally pushes newly created images to the private Azure Container
Registry’. Each Docker image version is tagged automatically with an auto-increasing build number and with a

static tag to control release versions manually.

L https://www.drupal.org

2 https://www.keycloak.org

3 https://angular.io

4 https://azure.microsoft.com/en-us/services/devops

5 https://azure.microsoft.com/en-us/services/devops/pipelines/
6 https://opensource.com/resources/what-docker

7 https://azure.microsoft.com/en-us/services/container-registry

ELG 7/26

European Language Grid l |f|
D3.2 Platform GUI (initial release) l E LG

Development Deployment Operations

Kubernetes

Figure 2. Angular application life cycle

We started the development of the project front-end part with the latest Angular 7.2 version. Since then it has
been upgraded twice. We currently work with Angular 9.0. This allows us to keep all the front-end technology
up to date, build a long-lasting product and keep the technological stack open to new feature development and

fail-proof to updates in other parts of the projects.

One of the challenges of the modern single page application (SPA) built using JavaScript technologies is
accessibility to search engine crawlers, which can only access static HTML files. They do not run on the browser,
and thus cannot access web pages generated dynamically in the browser when the page is accessed. In these
cases, most of the important information from a page is not read. However, Angular can handle this issue.
There is a way to develop and deploy an Angular application so that it can provide whole HTML files to search
engine crawlers. This approach is called Angular Universal.®2 An application built this way also runs in the
browser. The technology represents a good approach to meet all SEO requirements, as well as usability best
practices. It works as follows: whenever a user or crawler requests a web page, instead of doing it the usual
way — answering user requests with HTML and all JavaScript files — an intermediate step is introduced that
renders the response and sends complete HTML files to the user. As soon as this HTML is delivered, the user

can see the result immediately, and when the JavaScript is delivered, the application becomes interactive.

Angular is a JavaScript framework built using TypeScript.® It is a strongly typed language that gets transpiled to

JavaScript. The smart type system of TypeScript helps in the development of safe code.

Visual Studio Code?® (Figure 3) is used because it is one of the best code editors in the market. It can be
extended by various tools written by developers for other developers. It features Angular extensions that help

write better TypeScript and detect errors.

8 https://angular.io/guide/universal
9 https://www.typescriptlang.org
10 https://code.visualstudio.com

ELG 8/26

European Language Grid |||” E LG

D3.2 Platform GUI (initial release)

fie Ede Solecton View Go Debug Torminal Help ® sppcomponest = - ey - Visul Stede Code - =] x

OPEN LDITORS 1 UNSSAD L)

Figure 3. Visual Studio Code

The code is being checked at development time and is inspected for both potentially ambiguous expressions

and code that could lead to errors. Visual Studio Code detects many errors before they have a chance to arise.

During a typical work day, a developer writes code, runs scripts, builds it into an application and then runs it in
the browser. Developers often do this tens and sometimes hundreds of times per day. It would be smart to
help them save development time by building only the parts of the application that have changed since the
previous build. Webpack!! is a tool that bundles all assets into production code. Every time a developer
implements a change, the application is rebuilt with new changes taken into consideration. Even if the current
ELG is not an extremely large project at this point, completely rebuilding it after every change to see the
preview in the browser would be time-consuming and inconvenient. One of the key features of Webpack is Hot
Module Replacement. It allows for modules to be replaced without the need for a full browser refresh. It saves

valuable time by only updating what has changed and code changes reflect almost instantly.

There is a need for a uniform web design implementation across the whole portal. Recreating every design
element from scratch would be unnecessary as there are design systems available that operate with pre-
created design element libraries that can be adjusted to the needs of the project. The Google Material'? design
theme was chosen for ELG and it has been useful for different parts of the project. As the application grows
and is put together with multiple tools and project parts, there is also a need for a uniform design. Sharing
Material design with the CMS, service GUIs and the catalogue has helped to ensure a seamless look on the

application’s visual parts (Figure 4).

Just before the code is sent from the development machine to the repository, it is automatically tested and
built to ensure that only working code is checked in. This is done with the help of the Husky hooks that

intercept Git workflows and run code inspections.

11 https://webpack.js.org
12 https://material.io/design

ELG 9/26

European Language Grid |||"| E LG

D3.2 Platform GUI (initial release)

Towards the Primary Platform :
for Language Technologies in Europe

EUROPEAN

| . LANGUACE Technologies Rescurces Community Evemts AboutE
GRID

Figure 4. Using the same design and style elements in the different solutions

3.2 Functionality and Web Interfaces

The following pages have been created for the central portal:

e Homepage
e FEvents page
e About page with the following subpages:
= Grid
= Consortium
= Open Calls
= Stakeholders
= National Competence Centres
e (Contact Us page
e Terms of Use page
e Three silo pages are planned and will be activated in the following releases:

Technologies, Resources, Community

The content of these pages mirrors the corresponding pages of the project website (currently available at

https://www.european-language-grid.eu) to provide a smooth transition for the users.

For ELG Release 1 alpha, the logo has been adjusted to reflect the state of the alpha release and an explanatory

text has been added to the homepage. This information will be removed later (Figure 5).

All pages have been created according to the guidelines established in deliverable D3.1. “Requirements and
design guidelines”. The design guidelines were updated on 9 January 2020, following a meeting of the design

team, which took place on 11 November 2019. The following points have been revised:

e Basic colours (slightly adjusted and later updated to meet WCAG 2 level AA accessibility standard).
e Icon library defined.

ELG 10/26

European Language Grid |||” E LG

D3.2 Platform GUI (initial release)

e Link to CSS file updated.
e Specific design elements such as colours, elements, icons, text styles updated.

e Several example layouts presented.

P e Langasge Sats amd punenien sy

Updates, [vents, Open Calls

Figure 5. New homepage

When a user reaches the main page, the single sign-on mechanism checks whether the user has been signed on
before and, if yes, they are signed in. Some pages are restricted to authorized users only (e.g., upload of
resources) and some are not (such as catalogue search results). Depending on whether only authorized users

can see the content, and following the initial checking, an unauthorized user may be sent to the login screen.

4 Content Management System

4.1 Technical Description
Drupal was chosen for static content management, as it is one of the leading and most popular CMS

worldwide. Drupal acts as a headless solution, which means that it is mainly used as a back-office application

ELG 11/26

European Language Grid l ||§|
D3.2 Platform GUI (initial release) l E LG
and end-users do not see anything directly from the CMS. For external access, the Drupal server generates

menus and HTML content pages and it facilitates configuration using the REST style API.

Development Deployment Operations

Kubernetes

Figure 6. CMS life cycle

Figure 6 describes the CMS development process. It is very similar to the Angular development process:
developers upload their code and seed data to the repository, where automatic pipelines push Docker images
to the private Azure Container Registry. For the CMS, there are two parts and two Docker images — one for the

CMS instance and another — for seed data. The seed data container holds:

1. initial data for the CMS database, e.g., site configuration and HTML content.

2. files for the CMS website, e.g., logos, favicon, images, PDF files and other downloadable files.
The ELG platform deployment pulls these Docker images by providing image pull secrets.
To work for our setup, the Drupal instance needed to be extended with several modules:

e CKEditor: This module allows Drupal to replace text area fields with a visual HTML editor, which brings
WYSIWYG editing to the web.

e Menu Item Extras: This module allows adding extra configuration fields for menu items.

e Rest Menu Items: This module allows accessing menu items via REST.

e Keycloak Integration: Integration of our single sign-on solution.

e Webforms and webforms REST module: This module allows the creation of web forms, as well as

getting and posting them via REST.

4.2 Functionality and Web Interfaces

There are multiple content types served by the CMS. The most basic one is a simple page, for example the
landing page (Figure 7). Its content is prepared in the CMS and transferred to the portal in the form of JSON
when requested. To be able to create content that looks the same in the CMS and in the ELG portal, a portion
of style configuration should be shared between them. A Google Material stylesheet file that is exported from

the ELG portal and imported into the CMS ensures common ground between these two components.

Three menus are maintained in the CMS and displayed in the ELG portal. These are the main menu in the
header and two secondary menus in the footer — one on the left side that mimics the header menu and one on

the right side. There is one link (Contact us) in the right side footer menu at the moment (Figure 8).

ELG 12/26

European Language Grid |||” E LG

D3.2 Platform GUI (initial release)

Edir Sections page Landing

~— etantes
Lot amnt
O] Aot

P e

WOwON
B VS Yo L 2 an ® » &2 n"ed
Thark you very much for your sderest n e Coropesn Langeage Grd v o= AW
e bresplosrorleoapu e o s
B
> AT I3 WL WedDACK e 1end 3 armad 1 COICHDeIpeaD
Langeage Larguace dats ase ety
Figure 7. Landing page in the CMS
J EUROPEAN 5D [2)
|l|, LANGUAGE R, :
GRID

Figure 8. Header and Footer menus

ELG menu link type *

. CMS

Figure 9. Menu link editing

Each menu item can be configured individually by indicating the target links of the menu item and various

other options (Figure 9).

ELG 13/26

European Language Grid
D3.2 Platform GUI (initial release)

flI'ELG

There are additional parameters added to the menu item configuration, such as the ELG menu link type (Figure
10). This is added via the Drupal module “Menu items extras” and it makes it possible to configure the type of
link and prepend the URL depending on this type. When the menu information is received by the front-end,
there are parameters that mark the type of link (Figure 11). For example, CMS links are prepended with /page/

and React links are prepended with /catalogue/.

ELG

Edit menu link
Home = ADMinISFation » Structure » Menus

Monis Mok tigle *

About I1C

pean Language Grid (2

an this menu Snk seints 1o

® Seart typing the tihe of = You can slto enter an internal path such

¥ Enabled

A flag for whethes 1he link shouls be enabied

Shomn when haverng over the meau link

Show a3 expanded

selected and tha mesu hok hes children, the menu will always appesr expanded This option m

Parent ek
<Main naigation > -
1 he avniabie as

The manmum depth for & bnk and all a3 chikdren is fixed, Some menu lnks may »¢

Weight
44

ke weight among links m the same menu ot the 3ame depth. In the menu, the inks with high wesgl

ELG menu link type *
& oms

External

Angular

React

Show as not clickable

When his box n checked, manu tem will be showed, bt @ will net be chickable for end wier

Figure 10. Editing a menu type

>3

Reyl 21007 pbe A5 4Ce5-2T M-

title

“Everts”

enigting: true

T1oA0RLC BTN E3CD 0TGN 0272045 T2, title:

[y “rome”, Sescristion: sull, wri:
PO (hey: “SeddMLC EM0-A300 DT ETIA5T 24, title: “Home®, description: mell, vl
3 (hey: “OpiMal 9594100 0004 159006 T TN, title: *Tecwologles®, sescristion
P20 (heye CRYSSOTINANG6-2000-9ed 9305114020005, titler “Resources®, gescrliptlos: sell,
P30 (heyr “SIenlMS 82134032 0000 ST, titler “Community”, oescristion
wdi (heyr 210760 A9 A0AE- 2704 THNELA N X204, titier “Events®, descriptlon) mull, el

b TR TN Lo

Cptan-Language-gric.eu/cen/conferances - and-worcanogs”

soferencet-mnd-wartzhcpr”

S8 20420 3422 aald 000 L D04

g meny_lisk type:
ttlickadle

sull, wri:

full, wrl

"Daseiteme”,) ,.)

“taseiniee”, .)

urd)
“Bo0e/1S

“toce/1¥)

Figure 11. Menu items received as a JSON object through REST

14/26

European Language Grid l ||§|
D3.2 Platform GUI (initial release) l E LG

Access to various CMS actions is granted through a permission mechanism which can be assigned to different
roles (see Figure 12). For example, access to menu items is not restricted to logged-in users so that every page

visitor can see the menu.

ANONYMOUS AUTHENTICATED CONTENT

PERMISSION USER USER ADMINISTRATOR EDITOR
RESTful Web Services

Access GET on Me Tree resource v v

Access GET on & rems per menu resource o .

Figure 12. Menu permission mechanism

5 Catalogue Ul

5.1 Technical Description

For the implementation of the catalogue Ul, we moved away from the traditional monolith architecture which
dictates that back-end and front-end are tightly connected. Instead, we follow the emerging micro-front-end
architecture!® which separates the two. This makes each codebase simpler and easier to maintain. Also, by
decoupling the two concepts, the back-end and front-end developers’ team can take independent decisions,
which makes the development process faster and more versatile. For the development of the catalogue Ul we
use React!®, a JavaScript library for user interfaces. The React GitHub repository has more than 145k stars and

is widely supported by large enterprises with an MIT license and a vast and vibrant ecosystem.

The catalogue Ul is implemented as a Single Page Application (SPA). In this way, the end-user experiences
instant page updates instead of full page reloads. This is made possible due to AJAX requests, the Virtual
Document Object Model (VDOM) and the Reconciliation heuristic algorithm O(n) that the library uses to update
the DOM of the page. In order to deliver a robust and easy to maintain application, we exploit mature and

widely adopted technologies and libraries that are well documented and community supported.

For the state management of the catalogue’s data, we use Redux!® which utilizes the unidirectional data flow
pattern. This provides a single place to store and update the data and ensures that each component gets
updated whenever a modification in the data is triggered. For the client-side routing, we use react-router-
dom?®, This library provides access to the user’s browser history and utilizes the concepts of dynamic routing
where routes are rendered while the catalogue Ul is rendered. For the authentication and authorization part
we use Keycloak’s JavaScript library.}” Following the registration of our application to Keycloak, we are able to
access user information (username, e-mail) and acquire authentication tokens. This information feeds into
policy-related actions; thus, we can assess if a certain user should be allowed to view restricted pages and if

she should be granted access to specific functionalities, like the try out GUIs, for example.

We developed many reusable components for the catalogue Ul that are kept as simple and flexible as possible.

It promotes code efficiency, maintenance and maximizes reusability of the components.

13 https://martinfowler.com/articles/micro-frontends.html
14 https://reactjs.org

15 https://redux.js.org

16 https://reacttraining.com/react-router/

17 https://www.npmjs.com/package/keycloak-js

ELG 15/26

European Language Grid l ||§|
D3.2 Platform GUI (initial release) l E LG
One of our primary concerns is to develop and deliver a catalogue that provides a pleasant experience to the
end-user independently of the browser or device they are using. In order to have as broad a browser coverage
as possible we transform the code into ECMAScript 5 code that is supported by many browser versions. We

specifically target a broad range of browsers based on global usage of production builds.

To accomplish these functionalities, we use the official create-react-app front-end build pipeline, which, among
others, utilizes webpack for the bundling process and Babel for the transpilation stage. By using this pipeline
tool, we also get an optimized production build which is produced each time the GitLab CI/CD is running in
order to build the Docker image that we deploy to Kubernetes. This Docker image contains an Apache server

which serves our production-ready application.

In order to have some baselines of quality measures for our application we have used Google’s Lighthouse!®, an
Open Source auditing tool for performance and accessibility (Figure 13). For upcoming releases, we aim to

improve these metrics and focus more on features like SEO and Server-Side Rendering.

Performance

Metrcs (]

Figure 13. Performance metrics

5.2 Functionality and Web Interfaces
The catalogue Ul is the main point through which users interact with resources hosted or described in the ELG.

These include:

e Functional content, i.e., LT services and applications that are fully integrated into the platform and
that can be used through trial Uls supplied by ELG and executed following ELG specifications.
e Non-functional content, i.e., metadata records for
o data resources (e.g., corpora, datasets, lexica, terminologies, Machine Learning models,
computational grammars, etc.) that are available through ELG and/or other catalogues, and
o tools/services that can only available in a downloadable form from the ELG platform or that are
available through other catalogues or websites
e Metadata records for companies, research organisations, projects, etc. that are active in the LT

domain and can promote themselves through ELG, while providing an overview of the LT landscape.

18 https://developers.google.com/web/tools/lighthouse/

ELG 16/26

European Language Grid l ||f|
D3.2 Platform GUI (initial release) l E LG
ELG targets a wide range of users with different requirements and expectations, broadly divided into the

following groups (cf. Deliverables D2.1, D2.3 and D7.1 for more information):

e content providers and developers and integrators are providers and consumers of LT resources, as
described above,

e information providers and information seekers are providers and consumers of LT-related (meta)-
information, as described above,

e citizens, i.e., individuals that want inform themselves about LT and that understand the scope of ELG,

e ELG platform and content administrators, i.e., the ELG technical team that administers and monitors

the day-to-day operation and performance of the platform.

The needs and requirements of each user group have influenced the platform architecture (D2.2), the

metadata schema used to describe the entities of the catalogue (D2.3) and, of course, its design.

In view of Release 1 of the platform (due M16), the implementation of the catalogue Ul has started but is still
at an early stage with a limited set of functionalities, focusing mainly on the consumer’s side'®. The pages we
have implemented until now support searching and browsing the catalogue, selecting and viewing descriptions
of resources or related entities (organization, project), and testing of functional services. Still lacking is a
number of enhancements and features, which are already planned and will be implemented soon (e.g., better
rendering of the labels of metadata elements and values, deployment of visual aids for some actions, etc.). We
also expect to get feedback from real users of ELG Release 1 alpha, which will be taken into account at the

follow-up stages for next releases, if time constraints for this release do not allow immediate reactions.

Keeping in mind the different applications that should be integrated, the catalogue Ul follows the overall
design concept of the ELG front-end Angular 8 SPA application and corporate identity. Accordingly, it features

the same header and footer areas, icons, typeface and colour scheme to achieve a consistent look and feel.
In the following section, we present the main pages of the catalogue Ul and their features.

5.2.1 Catalogue Browse and Search Page

The catalogue main page displays minimum information, allowing users coming from the ELG main website to
get a clear picture of the contents of the ELG platform. The top menu items are inherited from the main ELG
website; they redirect the user to the corresponding sections. The structure of the page follows the standard

way of presenting resources in other catalogues, enabling users to quickly familiarize themselves with ELG.

The main section of the page lists the catalogue contents in two alternative forms: list of items (Figure 14) and
items in the form of cards (Figure 15). The items are sorted by resource type and in alphabetical order; other

sorting options will be added at a later stage.

The information displayed for each item is carefully selected to serve as a preview of the full description and to
help users decide whether they want to explore the item further. For the time being, and following the main
findings of the user survey (D3.1), this information includes: the title of the resource (which is a link to the
landing page of the item), a short summary of its description, the licence(s) under which the resource is

available, the language(s) of the resource or supported by the tool/service and keywords. Icons on the right are

19 A lot of the functionalities required for the population of the catalogue, such as the upload of metadata records and physical files of
resources, management of metadata records and services, are performed through APIs and processes at the back-end side, and are, thus,
not presented in this deliverable.

ELG 17/26

European Language Grid | |”
D3.2 Platform GUI (initial release) l E LG
used to provide visual cues or points of reference for users as they move through the interface; for now, only
the type of resource or a related entity is used. Other types of information (e.g., popularity, other classification

information, etc.) will be added based on user feedback of the item snippet.

war Al Fine ot poy
Langeage Rescurcey 437 Beanh Resan i)
BSERTNER Enghsh D ‘e
be Namec Lrity Haoognton me oo (amg o diferent 300r0aches 10 1000Grise erttes (1) besed or
modely and (7] Dated on Actonanes Tria modse 1os Do Mpkmemed (g Te Ajacte Opesid P
Langeages ool The model beoed

BV Arochares 20192045 [Pracessed|

Sevvice hnvisons Enginh ianslations of Garman BAR Jeochures Yom e bast four yodrs. in TIEX foemat TIVIX foowt Aos

boen torected 3 e remfirg I W E00S

—_— BV Brochvares and Website 201€ Processed)
i s S b sk Prirains nn B aiis. B P —
Figure 14. List view of catalogue contents
Choae Al Finters (= Heul page
La~guage Rescurces 437 Sewerh Neve =
BERTNER Englsh BV Brochures 2011 2015 (Processed)
Languages
e Nared Lotty Nocogaon we wo wsog teo dffwend trginh banslstorn of Gorman SV Beochures frore B lesl fow
Wpeoaches 10 recogse erdtes (1) Dased on modes e (2 yoats i TIEX formt TMX Sarnad fus boon corsecd and e
Dasad on Batonwes Thin vwaisde hay Deen avpinrverted o4 rg Te s inag fle 4l ogw)
Apache DML ol The mode' Based
Service fusctions
B Brochures ang YWedste 2074 (Frotessed) BARA Pubbitanons (Processed]
Borgual tax e of Comean © CEaglah vanuasons of the Fecers TNX the wrt 11558 Tue (YRS Canran Laghan
Ukconoee Mristyy of B dedor’s sebeie and beochuss Topios nolude peblcatonstroctures of e Tedeal Mnktry ol Trampot and

P e e P—— o o k.

Figure 15. Card view of catalogue contents

Users can browse the catalogue or search for items in two ways: (1) using the bar on top of the page (Figure 16)
for free text search, and (2) using the facets (on the left-hand side of the page) to narrow down search results
using specific criteria. The search categories both for free text and facets have been carefully selected to reflect
user preferences from the survey and are restricted so as not to overwhelm the users with too much
information. For Release 1, the facets include language, function for LT services, licence, resource type and
related entity type, which are the main features by which users search for resources (D3.1). Again, for future

releases, these will be enriched with user requirements.

{1 EUROPEAN L]
M tancunce — e

GRID

Figure 16. Header area of the catalogue page

ELG 18/26

European Language Grid l |f|
D3.2 Platform GUI (initial release) l E LG

5.2.2 Landing Page for Items

Once users have spotted an item they find interesting, they can click on its title and will be directed to a page
that describes it in detail. We developed landing pages for each item category (i.e., LT services, data resources
and their subtypes, organizations, projects, etc.) included in the catalogue. They allow users to get detailed

information on an item, preview its contents or functionality, and, finally, obtain and use it for their purposes.

Even though the landing pages contain information that differ for each category, our main efforts aim to
provide a consistent visual look and feel. Landing pages share a common layout that consists of a header, a
right-hand sidebar, a main content area and a bottom content region, described in the following subsections.
Each page uses the same principles customized for the different categories of content (i.e., Project,
Tool/Service, Organization, Corpus etc.). The pages apply the general principles of content organization such as

grouping similar items together, numbering items, and using headings and prompt text.

The information displayed on the landing page of each item comes from the respective metadata record.
Taking into consideration the specificities and richness of the metadata schema (D2.3), but also user-
friendliness, we opted for layering the information along specific sections of the page and highlighting the most
important information. Tabs are also used for splitting information into smaller views and enabling users to
navigate through the item features: view its general information, try out the service or view the samples of
datasets (not yet implemented), view information on how it is distributed and obtain the item (run the service
or download the data resource), etc. We also use expansion panels (also known as accordions) to group similar

information and keep the landing page at a reasonable length.

The main challenge in designing landing pages for the catalogue resources is that the metadata schema
includes a lot of elements that take values from controlled vocabularies, rather than free-text items. This poses
a problem since the accumulation of many elements and values together can become tiring to the eye. The
proposed design displays the keys (element labels) in small font size and places more emphasis on the values,
as we believe that in this way the values are much better identified visually. In addition, the positioning of the

elements on the page is carefully thought through to draw users’ attention to the most important information.

5.2.2.1 Header
The header area displays the main information for each item. Its purpose is to introduce the user to the current
page. The left header region is reserved for the logo of the item (Figure 17); if none is provided by the resource

provider or metadata creator, then the default icon associated with its category is displayed (Figure 18).

German Research Center for Artificial Intelligence Organization

’m DFKI

Figure 17. Header for an organization with the organization logo

University of Edinburgh Organization

2 UEDIN

28
o,
=

Figure 18. Header for an organization with default icon

ELG 19/26

European Language Grid

W
D3.2 Platform GUI (initial release) l l E LG

5.2.2.2 Main Content Area
The main region contains the information that is of most interest to users. Since we do not have control over
free text items, like, for instance, the description of a resource item, we ensure readability by trimming texts to

a maximum of five lines of text. A “Read more” button expands the text to the remaining lines.

The description is followed by the “classification section” (Figure 19) in which we group information that
classifies each item according to different parameters, such as keywords, domain, relevant LT area, resource
subtype, etc. We use the colour purple to divide the tag-label from the actual tag, and Material’s Ul Chips for
tag values. We currently investigate if we can use these tags for search queries.

GTEC consits of 600 T-H pars manually annclated for entaiiment (1.e, whether T entads H or not) by human annotators, The
dataset which is tailored 1o guide training and evaluation of prospect RTE systems, is equally divided in three subsets each
one representing the ocutput of a specific HLT application: Question Answering (QA), Comparable Documents (CD) and

Machine Translation (MT), and pettaining 1o specific subject fields (e.g. law, politics, travel). T-H examples that correspond to
success and failure cases of ... Read More

keywords

Ar OfTextupiEntadm

Intended_application

w poitics travel domain

annotaledCopus corpus_subclass

Figure 19. Main section of a corpus

For Projects and Organizations, the main content area is similar. Still, fine tuning for specific information is
required. For instance, while the description and classification sections follow the same principles, Organization
has a different need for content, i.e., “HasDivision” items (Figure 20). Other categories, on the other hand,

include more information and thus additional layouts and styles. One example is the category of Tool/Services.

Athena Research Center

L
Afera Sowoarth 47¢ Froveton Corfre AR | | 8 5ciee8c roscarch and tachroiogeal orgaiaton, dmtening wnder tte
magmms o e Caveed Sevt ol PR p— Organzation information
AN baaiie e Language end § et alv
Preveion; brstiute for e Mere; el ate ATHNATREVNIT X0 KENTRO KANOTOMAS 5715
Pl Syatems ralfute (15 - Reed Wes '

| b v

HasDrvesbom HaaDrvmion DO 123300
Nt Languace Pryoceesing sec -: Ieaing0 Yo Langusoe 90d Seeech LRioer saseantiOngeriestion
L o Y b uddes q' ueabg
MU e Andress
ANrinos € 410 § P
avs— A Marcaisn
Arwcs
NUPU conduty Deok and siphed st 0 e Te lalde 10 LaeQuage ond Speean Processng 8128
fei0s of NP andd Knowienge Tecrooioges. 1 0ssgns. LIPERens RC | is 0ne of e NSNS of LPerd R
L il L A o Mos o. A v e Moad Muco
Aews i Avams
Hivea
Ahachre Tormafona gt Ares Mg Omsopreracoot

[

Figure 20. Landing page for an Organization

ELG 20/26

European Language Grid |||H E LG
D3.2 Platform GUI (initial release)

Figure 21 displays the landing page of a Tool/Service. Below the classification section we use three card blocks
to graphically display the actual use of the toal, i.e., the main specifications for the input that the tool expects,
the function (operation) it performs and the expected output. In order to keep the cards small, an expansion

panel is used that hides some information under a “Read more” link.

BoYODIE Named Eatity Disambiguation (Me SH ondy)

@ ! e

- - _ .- Ill.o] SATTE Tean Usiverwly o
Wt

[

Adarcmy =¥

L

Figure 21. Landing page for a tool/service

In a similar way, the landing page for a Project (Figure 22) also engages users with areas that are visually the

same but alters the main content area focusing on a project’s relevant content.

5.2.2.3 Sidebar

This area was created in order to show information deemed important for each category while keeping the
page short enough so that users do not have to scroll down in order not to miss the information. For instance,
for resources, this section includes information on funding projects, contact points where users can ask for
more information, etc. The screenshots included in previous sections show the sidebar area, too. A grey

background colour distinguishes the sidebar area from the rest of the content.

ELG 21/26

European Language Grid |||” E LG

D3.2 Platform GUI (initial release)

: European Language Grid

Project information

SO) (GANSES) |G I..,,...,. o
o —— I HAree
Funding

P orcec by

Coocreiraton - Cropenn Commas on

Wela e
P orcng siteme
Partoparts
fentirg _coumtry
Nrdrg type

iy

Figure 22. Landing page for a project

5.2.2.4 Bottom Content

The bottom content area (Figure 23) brings together information types that are common to all categories and
considered important enough to show on the main tab. Such information includes documents, such as user
manuals, publications, etc. where users can learn how to use the resource, have access to information on the

resource creator and creation details, evaluation of the resource, etc.

Documanlaticns
Evaluation
Creation
Figure 23. Bottom content area for resources
5.2.2.5 Tabs

Tabs are used to separate information into appropriate groups and draw users’ attention to particular details.
All categories include a default tab “Info” which contains the main descriptive and technical metadata. Further,

different tabs are used depending on the category. Thus, all resources include a tab with information on their

ELG 22/26

European Lan ri
o oo o e HI'ELG
distributable form(s), i.e., the licensing conditions under which a resource may be acquired, technical details
(such as format) of the physical files. In later releases, this tab will include the button for running/downloading
a tool/service or downloading a data resource. Functional LT services include two more tabs (Figure 24): (1) a
“Test/Try out” Tab, which contains the trial Ul implemented by ELG so that users can test the service and which
is specific to broad categories, namely, Information Extraction, Machine Translation, Speech Synthesis,
Automatic Speech Recognition (Figure 25); (2) a “Code samples” tab, which allows end-users with technical

knowledge to test a tool in command mode.

Info Download/Rur Test/Try out Code samples

Figure 24. Tabs for functional services

Tilde Automatic Speech Recognition (ASR), Estonian Language

Tilde ASR ET

Verseon: v1.0 0 (automatcaly assgned

Use audi> from

Figure 25. Test/Try out tab for a sample ASR service

6 Authentication Solution

6.1 Technical Description

For authentication and, partially, authorization functionality, we selected Keycloak?®, an open source software
which is a good fit for the ELG platform. Keycloak provides a wide range of functionality for authentication and
authorization. Despite Keycloak’s broad set of features, some catalogue-specific authorization features had to
be developed by the ELG team itself. Moreover, the CMS currently uses its own authorization system.

However, if necessary, Keycloak authorization capabilities can be used for different ELG parts.

For our needs, a specific realm was created, named ELG. This realm contains a list of clients, i.e., external
applications that can do authentication and/or access Keycloak services. Each ELG GUI and back-end
component that directly exploits Keycloak have their own client defined: Drupal CMS, Angular application,

catalogue React application as well as the Gatekeeper software that controls access to LR services (see D1.3).

20 https://www.keycloak.org

ELG 23/26

Eur n Lan ri
oo etom o o e HI'ELC
One of the functions of Keycloak most critical for ELG is the centralized user login system. It provides single
sign-on capabilities for multiple independent applications using the Open ID protocol that is built upon the
open industry-standard protocol OAuth 2.0% for authorization. By using the single sign-on capability, after
logging into the first application, the end-user will also be automatically logged into other applications. Some
front-end applications use the single page application (SPA) approach without a dedicated back-end that could
save user sessions (this is essential to also keep the user logged in after page reloading, browser restarting or
opening a page in another browser tab). Keycloak saves a user’s session state and if the end-user is entering

the SPA, the SPA can restore the user’s logged-in session using Keycloak. A typical user flow looks as follows:

1. The user accepts the closed area of SPA or clicks on the login link.
2. SPA redirects the user to the Keycloak login page of the ELG realm.
3. Keycloak tries to restore the user session:

a. If the session is restored and the user is known, the user is redirected back to the SPA.

b. If the user is not known, then the user is asked for their credentials (optionally also external
authentication capabilities, like Google, Facebook), and after authentication the end-user is
sent back to the SPA.

4. The SPA gets an access token that is sent back together with the end-user redirection.

5. The SPA can extract basic user metadata from that access token: user id, name, surname and e-mail.

One of the currently ongoing development actions is custom theme development. Custom themes allow to
design and adjust all GUI forms and e-mails. The current live environment is exploiting Keycloak default
themes, but for upcoming releases at least login, password recovery, registration forms and e-mails will be

replaced with a custom ELG-based design.

6.2 Functionality and Web Interfaces
Keycloak provides default GUIs for both the end-user and for back-office needs such as user management

operations and platform configuration. Currently, the following GUIs are available for end-users:

Login (Figure 26): the live environment currently allows registration with locally administered accounts only,

however, logins can also be performed with external logins in the development environment.

EUROPEAN LANGUAGE GRID

Figure 26. Login form

21 https://tools.ietf.org/html/rfc6749 — the OAuth 2.0 Authorization Framework

ELG 24/26

European Language Grid |||" E LG
D3.2 Platform GUI (initial release)

Registration form (Figure 27): a self-registration form is available right now in the development environment
because the public live platform has not been opened for general use yet (interested users have to request a

login by sending an email to the ELG administrators).

EUROPEAN LANGUAGE GRID

Figure 27. New user registration form

Password recovery form (Figure 28): in case, the user forgot their credentials, they can restore their password
by providing the e-mail address that was registered during sign-up. Then, the user will receive an e-mail from

Keycloak to reset the password.

EUROPEAN LANGUAGE GRID

Figure 28. Password recovery form

Keycloak provides full support for user management: credentials, management of user details, attributes, lock
and unlock user, check access logs, sessions and many more operations (Figure 29).

ELG 25/26

European Language Grid |||H E LG

D3.2 Platform GUI (initial release)

Figure 29. Keycloak user profile form

7 Conclusion

In this deliverable we report on the progress of development of the ELG platform GUI. We present an overview
of the overall front-end architecture, and provide the technical description and implementation details for the
solutions designed for the central portal, CMS, catalogue Ul and authentication solution. In February 2021,

Deliverable D3.3, “Platform GUI (interim release)”, will provide an update of the current work.

ELG 26/26

