EUROPEAN
LANGUAGE
GRID

D2.2
Specification of the ELG
platform architecture

Authors:

Dissemination Level:

Date:

Stelios Piperidis (ILSP), Dimitris Galanis (ILSP), Miltos Deligiannis (ILSP),
Katerina Gkirtzou (ILSP), Penny Labropoulou (ILSP), Georg Rehm (DFKI),

Florian Kintzel (DFKI), Maria Moritz (DFKI), lan Roberts (USFD), Kalina
Bontcheva (USFD)

Public
30-06-2019

European Language Grid
D2.2 Specification of the ELG platform architecture

About this document

flI'ELG

Project
Grant agreement no.
Coordinator

Start date, duration

ELG — European Language Grid

825627 — Horizon 2020, ICT 2018-2020 — Innovation Action
Dr. Georg Rehm (DFKI)

01-01-2019, 36 months

Deliverable number

Deliverable title

D2.2

Specification of the ELG platform architecture

Type

Number of pages
Status and version
Dissemination level
Date of delivery

WP number and title

Task number and title

Report

36

Final — Version 1.0

Public

Contractual: 30-06-2019 — Actual: 29-06-2019

WP2: Grid Platform — Language Grid

Task 2.1: Req. collection and specific. of the higher-level ELG architecture

Stelios Piperidis (ILSP), Dimitris Galanis (ILSP), Miltos Deligiannis (ILSP),
Katerina Gkirtzou (ILSP), Penny Labropoulou (ILSP), Georg Rehm (DFKI),

Auth
uthors Florian Kintzel (DFKI), Maria Moritz (DFKI), lan Roberts (USFD), Kalina
Bontcheva (USFD)
Reviewers Khalid Choukri (ELDA), Katrin Marheinecke (DFKI)
Consortium Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI), Germany

Institute for Language and Speech Processing (ILSP), Greece

University of Sheffield (USFD), United Kingdom

Charles University (CUNI), Czech Republic

Evaluations and Language Resources Distribution Agency (ELDA), France
Tilde SIA (TILDE), Latvia

Sail Labs Technology GmbH (SAIL), Austria

Expert System Iberia SL (EXPSYS), Spain

University of Edinburgh (UEDIN), United Kingdom

EC project officers

Philippe Gelin, Alexandru Ceausu

For copies of reports and other
ELG-related information,

please contact:

ELG

DFKI GmbH

European Language Grid (ELG)
Alt-Moabit 91c

D-10559 Berlin

Germany

Dr. Georg Rehm, DFKI GmbH
georg.rehm@dfki.de

Phone: +49 (0)30 23895-1833
Fax: +49 (0)30 23895-1810

http://european-language-grid.eu
© 2019 ELG Consortium

2/36

European Language Grid |||f| E LG

D2.2 Specification of the ELG platform architecture

Table of Contents

List of Tables 5
List of Abbreviations and Acronyms 5
List of Terms 6
Abstract 8
1 Introduction 8
2 Initial user requirements 9
3 ELG platform overview 11
3.1 ELG platform metadata 12
3.2 ELG LT tools and services 12
3.3 ELG Language Resources 13
34 ELG LT-related meta-infomation 13
3.5 ELG services 14
4 ELG platform architecture 15
4.1 Overview of the ELG platform architecture 15
4.2 Technical development roadmap and Minimum Viable Product (MVP) specification 15
5 Base infrastructure 17
5.1 Kubernetes cluster 17
5.2 Source code and Docker repository 18
5.3 Storage 18
6 ELG metadata model 18
7 ELG platform backend 22
8 ELG catalogue backend 22
8.1 ELG catalogue backend development framework 23
8.2 ELG database and indexing 23
8.2.1 Database requirements and criteria for selection 24
8.2.2 Indexing requirements and criteria for selection 24
8.3 Lifecycle of data and metadata in the ELG platform 25
8.3.1 Catalogue population 26
8.3.1.1 Metadata editor 26
8.3.1.2 Batch metadata uploading 26
8.3.1.3 Metadata harvesting 26
8.3.2 Uploading and storing non-functional content 26
8.4 Search, browse, view and download functionalities 27
8.5 Internal APls between core components 27
9 ELG platform LT processing services 29
9.1 Messaging middleware 29
9.2 Internal and external (LT) processing APls 29
9.3 LT processing services registration 32
10 ELG platform management and support services 32
10.1 User management 32
10.1.1 Registration 32
ELG 3/36

European Language Grid
D2.2 Specification of the ELG platform architecture

10.1.2
10.2
10.3
10.4
11

12

13

ELG

WI'ELG

Authentication/Authorization 32
Monitoring 34
Analytics 34
Licensing, billing and payments 34
User interface 34
Nginx server as a gateway 35
References 36

4/36

European Language Grid
D2.2 Specification of the ELG platform architecture

List of Figures

Figure 1: Architecture diagram

I'ELG

15

Figure 2: Technical development roadmap and MVP

16

Figure 3: Overview of the ELG-SHARE entities

19

Figure 4: Evolution of the ELG-SHARE model

20

Figure 5: Simplified subset of the metadata schema

22

Figure 6: JSON response of an ELG catalogue APl endpoint using the GET method
Figure 7: ELG backend APl Documentation generated with Core API

28

28

Figure 8: Swagger-based documentation for execution REST API

31

Figure 9: Basic user roles, user groups and permission scopes in the ELG platform

List of Tables

Table 1: ELG layers of content

33

14

Table 2: Platform releases and features per release

16

List of Abbreviations and Acronyms

ACID Atomicity, Consistency, Isolation, Durability
Al Artificial Intelligence
API Application Programming Interface
ASR Automatic Speech Recognition
CcD Continuous Delivery/Deployment
CEF Connecting Europe Facility
cl Continuous Integration
CMDI Component MetaData Infrastructure
CMS Content Management System
CORS Cross-Origin Resource Sharing
CPU Central Processing Unit
CRUD Create, Read, Update, Delete
DSF Django Software Foundation
DoS Denial of Service
ELG European Language Grid
FAIR Findable, Accessible, Interoperable, Reusable
GDPR General Data Protection Regulation
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IdP Identity Provider
ELG

5/36

European Language Grid

D2.2 Specification of the ELG platform architecture

IE
JSON
JWT
LR
LRT
LT
MQ
MT
MVP
NCC
OAI-PMH
ORM
OWL
POC
RDBMS
RDF
REST
RFC
SME
SSO
sQL
TLS

Ul
URL
UX
XML
YAML

List of Terms

Content

Functional content

Language Resource

ELG

Information Extraction

JavaScript Object Notation

JSON Web Token

Language Resource

Language Resource and Technology
Language Technology

Message Queue

Machine Translation

Minimum Viable Product

National Competence Center

Open Archives Initiative Protocol for Metadata Harvesting
Object Relational Mapper

Ontology Web Language

Proof of Concept

Relational Database Management System
Resource Description Framework
Representational State Transfer
Request for Comments

Small Medium Enterprise

Single Sign-On

Structured Query Language
Transport Layer Security

User Interface

Uniform Resource Locator

User Experience

eXtensible Markup Language

YAML Ain't Markup Language

flI'ELG

Any type of assets included in the ELG platform, including functional and non-

functional content, as defined in the list of terms

Language processing tools and services that can be executed either locally or at a

cloud infrastructure

A resource composed of linguistic material used in the construction, improvement

and/or evaluation of language processing applications, but also, in a broader

6/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

sense, in language and language-mediated research studies and applications;
examples include datasets of various types, such as textual,
multimodal/multimedia corpora, lexical data, grammars, language models, etc. in
machine readable form.

The term is often used in the bibliography and related initiatives with a broader
meaning, encompassing also the (a) tools/ services used for the processing and
management of datasets, and (b) standards, guidelines and similar documents
that support research, development and evaluation of Language Technology (cf.
http://languagelog.ldc.upenn.edu/myl/Idc/LR_background.html).

In this document, and in order to easily distinguish between the main assets ELG
is catering for, we frequently use the term “Language Resource(s)” (or “data
resource(s)” or “dataset(s)”) to denote language data, while we use the term
“Language Technology tool/service” to denote software tools performing a a

language processing or Language Technology-related operation.

Language Technology A tool/service/any piece of software that performs language processing and/or

tool/service any Language Technology related operation

Non-functional content Any non-executable type of resource (data resource or source code of

tools/services) that can be included at the European Language Grid

ELG 7/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

Abstract

This document provides an overview of the architectural design of the ELG platform with a particular focus on
the ELG platform backend, while the complementary deliverable D3.1 focuses on the ELG platform frontend.
We outline the ELG platform’s main building blocks and components, the technological considerations and
decisions made, the software and application frameworks chosen, the application programming interfaces
designed, as well as the operations and user interactions currently foreseen. As the ELG platform development
is a dynamic and iterative process, this deliverable is to be considered a living document (until M30), and as
such it will be updated to reflect the evolution of the platform design and development. The document
provides a functional view of the ELG platform and describes the current ELG platform architecture as well as
the development roadmap as it stands at the time of writing. It provides a detailed account of the ELG backend
components with a special focus on the ELG platform catalogue and a brief description of the underlying
metadata schema, the ELG platform LT processing services, as well as the ELG platform management and

support services.

1 Introduction

We aspire to create and establish the European Language Grid (ELG) as the primary platform for Language
Technology (LT) in Europe in a concerted effort to address fragmentation in European LT business and research
and to strengthen European LT business. The project designs, develops and will deploy and populate the ELG
platform with and for commercial and non-commercial Language Technologies alike, including both functional
(running services and tools) and non-functional (corpora, lexica, terminologies, models, etc.) resources. Using
the ELG to identify, find, obtain and integrate LT tools/services and Language Resources (LRs), as well as to
contribute to and make available LT tools/services and LRs through the ELG, will create a multitude of benefits

for companies as well as for non-commercial and academic organizations using and/or providing LTs.

This deliverable provides an overview of the current state of the architectural design of the platform, its main
building blocks and components, the technological considerations and decisions made, the software and
application frameworks chosen, the application programming interfaces designed, as well as the operations
and user interactions currently foreseen. The primary focus of the deliverable consists in describing the ELG
platform backend components, while the complementary deliverable D3.1 will focus on the ELG platform
frontend. As the ELG platform development is a dynamic and iterative process, this deliverable is to be
considered a living document (until M30), and as such it will be updated to reflect the evolution of the platform

design and development.

This report is organized as follows: Section 2 provides a summary of the most important findings of the
concurrently running user requirements elicitation task (linking to deliverable D2.1). Section 3 provides an
overview of the ELG platform from the functional point of view, while Section 4 describes the current ELG
platform architecture and the development roadmap as it stands at the time of writing. Section 5 provides a
summary of the base infrastructure on which the platform will be deployed and the choices made (essentially
linking to ELG deliverables D1.1 and D1.2). Section 6 briefly describes the ELG metadata model and Section 7
provides a short overview of the ELG platform backend. Section 8 provides a detailed view of the ELG backend
components with a special focus on the ELG platform catalogue (i.e., the ELG catalogue), while Section 9

describes the main architectural choices underlying the integration and deployment of the ELG platform LT

ELG 8/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

processing services. Section 10 briefly describes the ELG platform management and support services, Section
11 the current user interface considerations and interactions, and Section 12 concludes the document with a

short description of the platform gateway.

2 Initial user requirements

The platform architecture, design and implementation are set to accommodate the requirements of all target
users as detailed in deliverable D2.1. In this section we briefly outline the main functionalities that the ELG
platform intends to cover; during the course of the project, these will be updated in line with the updates of
D2.1.

Users of the ELG system in D2.1 are grouped as follows:

e Content providers: providers of LT services and data resources that can be used for the development,
enhancement or operation of the LT services; they can be academic, public or commercial
organizations or individuals

o Developers and ilntegrators: users (e.g., SMEs or startups, but also researchers and developers of LT
applications) who wish to deploy services or datasets provided through the ELG platform in order to
integrate them in their own products and services and/or use it to conduct research and develop
applications

¢ Information seekers: mainly individuals who wish to find information on LT-related events, training
resources, etc. (i.e., not primarily interested in the LT marketplace)

¢ Information providers: commercial and academic organizations, LT-related/interested
associations/networks and individuals that wish to provide information on events, training, etc.

e (itizens: individuals that wish to be informed about LT and how it will influence their lives, and
understand the scope of ELG in advancing LT

e ELG platform and content administrators: ELG technical partners that will administer and monitor the

day-to-day operation and performance of the platform and its contents.
Users may play several roles when interacting with the system, but with different needs each time.
In response to the user requirements, the ELG platform will include mechanisms for the following functions:

e Functions for content providers:
o Providing content-type specific specifications, documentation and help for preparing and
packaging content
o Execution of the functional content at the cloud infrastructure if provided as docker images in
containers, following ELG technical specifications (cf. Section 9)
o Registration of content in different modes, depending on its type:
= Link to container images at a dedicated ELG docker image registry or similar registries,
from which ELG will pull the image
= Link to functional content with access provided in the form of an API
= Upload of files directly in the platform for datasets and downloadable tools
= Link to external repository (e.g., GitHub, institutional or other repository, etc.) where

the content will remain and be accessed from

ELG 9/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

ELG

o

Support for the formal description (metadata records) of the content and its related entities
(creators, funding projects, publications, related documentation, etc.) and for its update via one
of the following modes

= Upload of a formalized description file

= Manual editing of the description on a GUI form
Assistant for the selection of a licence appropriate for the content (wizard)
Support of pre-defined billing schemes, if the provider chooses to share the content for a fee,
and managing of billing transactions with the consumers
Support for providing new and additional versions (e.g., with reduced functionalities for testing
or demo purposes) of the content with appropriate linking to the older/original versions
Removal of the content and metadata records under safeguards, e.g., as long as future usage of
the content has not already been paid for by a consumer
Monitoring content usage analytics
Extra features for paid services (e.g., promotion of content, switching on/off user-generated

content)

¢ Functions for content consumers (i.e., developers and integrators, but also citizens or other users who

decide to deploy the content):

o

o

o

o

Browsing of a structured catalogue with metadata descriptions for all content

Searching for content with a faceted menu (on selected metadata elements) or a free-text box
Display of the search results in a list with a minimal description for each item and of a detailed
view page (landing page) with the full metadata record for each item of the content

Preview of data from the content files (depending on the format)

Testing of the tools/services if the providers have supplied such a version

Execution of specific functional content types (e.g., information extraction, machine translation
services) and display of results

Deployment of the content in different modes depending on its type, e.g., execution of
functional content on the ELG cloud infrastructure or remotely, download of data resources or
downloadable tools, etc.

Support for the selection of one of the pre-defined billing schemes for the content, various
payment options and monitoring of the content usage in accordance with the billing scheme
Provision of an API to language processing and other related services for integrators and
developers

Support and helpdesk for all functionalities

e Functions for information seekers and citizens:

o

O

O

Browsing information related to the ELG project and the platform, LT-related events, vacancies
and training material (videos, texts, etc.) structured in a pre-defined way

Search of the CMS content with free-text queries and user-selected prioritization of search
results

Browsing and searching the ELG catalogue of actors, projects, LT applications and LT business

areas

e Functions for information providers:

O

Addition and update of information related to entities (actors, projects, LT applications, etc.) via

an editor

10/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
o Addition and update of information related to events, vacancies and training material via the
CMS (to be approved by ELG editors/system administrators)
e Functions for ELG system administrators and content editors
o User management: user registration, user authentication, assignment of user roles and user
rights on content, etc.
o Overall management and day-to-day monitoring of the platform performance and system
activities with appropriate notification mechanisms
o Monitoring of usage analytics and billing/payment transactions
o Monitoring and removal of content when deemed necessary
o Follow up on remotely offered content (e.g., checking availability of remote services)
o Operating metadata harvesting processes, bulk uploading and editing of metadata records

o Editing and approval of CMS content.

3 ELG platform overview

ELG aspires to become the primary platform for LT in Europe, a one stop shop for LT research, development,

evaluation and commercial deployment. It brings together under one platform:

e Functional content: language processing tools/services of different types (e.g., machine translation,
speech recognition, information extraction) and media input/output (e.g., text, audio, video)

e Non-functional content: LRs featuring different types (e.g., corpora/collections of blogposts/tweets,
recordings of parliamentary debates, lexica and terminologies, models) and different media (e.g., text,
audio, video)

e LT-related meta-information: information about language technologies and their descriptions,
research and commercial organizations providing LT solutions, LT initiatives and projects, business

applications, research and commercial players in different application areas and countries.

ELG caters for and brings together the needs of the following main classes of users, as identified during the

initial user requirements study:

e LT-related information providers, seekers and citizens, that is research and commercial organizations
and individuals looking for language processing tools/services, language resources as well as LT-
related meta-information,

e language processing tools/services and LRs providers (also referred to as content providers in Section
2), as well as LT-related meta-information providers who wish to make available and deploy services
and data through ELG, e.g., LT companies, research organizations, universities and PhD students, etc.,

e users/consumers and integrators of language processing services and LRs (also referred to as content
consumers in Section 2), e.g., commercial and research technology players, researchers from
disciplines other than LT (such as bioinformatics, social sciences, etc.) who need tools and services for
different types of text processing (information extraction, text annotation, etc.), audio/video
processing (speech recognition, speaker identification, etc.), multilingual data processing (machine

translation, computer-aided translation, etc.).

ELG will offer its users multiple alternatives of using the ELG platform and interacting with it, facilitating

adaptation to their user scenario requirements, constantly collecting and integrating additional language

ELG 11/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

processing services and resources, as well as offering technical and linguistic support and gathering user
feedback.

3.1 ELG platform metadata

All types of LT assets mentioned above, i.e., software tools/services and LRs and information describing them,
as well as all LT-related meta-information are brought together, aligned and interconnected. The collected
information is formally structured and harmonized in ELG using a metadata model catering for the full language
data and services lifecycle, i.e., integrating, in an appropriately structured way, information about, inter alia,
the tools/services and LRs ownership, type, format and technical features, tool/service input/output
specifications, service deployment requirements, terms of use and licensing — for a detailed description of the

model, see also Section 6.

On the basis of the ELG model, metadata appropriately describing LT tools and services, LRs as well as all LT

related meta-information will be indexed and inventorized to create the ELG platform catalogue.

The ELG catalogue provides the user with all mechanisms and functionalities required to search LT
tools/services and LRs, and access them depending on and fully respecting their terms of use. Search functions
include simple keyword search as well as faceted search on the basis of selected elements of the metadata
model. Based on ELG metadata, functionalities of the platform also provide the user with indications on which

language tools/services can potentially be applied on which language data.

The ELG platform offers to providers of LT tools/services and LRs all mechanisms and functionalities to
appropriately describe, identify (by using/aggregating existing persistent identifiers), ingest and store their
assets. Multiple channels are foreseen for their provision and storage, including metadata editors, batch ELG

compliant metadata import and harvesting on the basis of agreed harvesting protocols.

3.2 ELG LT tools and services

Of primary importance and one of the main novelties that ELG is introducing, is the ability for LT tool/service
providers to describe, integrate, and deploy their functional services through ELG. ELG adopts the well tested
approach of containerization; i.e., an OS-level feature that allows multiple isolated user-space instances of the
corresponding service. For containerization Docker is (by far) the most popular choice today; it allows to

package an application with everything that it is required into one (standalone/self-contained) image.

In LT, containerization has only recently started being adopted, as, for example, in the LAPPS GRID project [Ide
et al. 2016]. For LT, containers are considered to be a solution for tackling some of the technical
interoperability problems. Operating system, programming languages, frameworks and library dependencies,
as well as dependencies of language processing services on different models can all be included in a single
image, ensuring that the service will operate as foreseen by its developer. Thus, basic language processing
services (e.g., tokenization, sentence splitting) as well as complex language services (e.g., sentiment analysis,
event extraction, speech recognition) are encapsulated in standalone/self-contained images. Syntactic and
semantic interoperability is tackled inside a single image making sure that e.g., all components of a linguistic
annotation or information extraction pipeline interoperate with each other and are correctly chained together.
Furthermore, containerization for LT research and development provides (a) support in facilitating reproducible
and replicable LT research and development, in the sense that processing software can be deposited and

reused as is, (b) further promotion of the principles of Open Science, and (c) assurance that legacy tools,

ELG 12/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
services and applications depending on older versions of operating systems, programming languages, etc. are

still runnable and usable.

ELG will provide a set of guidelines and technical specifications for building images out of existing and emerging
language processing software. Containerized processing tools/services (images) coming out of ELG partners,
the winning pilot projects of WP6, as well as other interested academic and commercial LT providers will be

uploaded and made available through the ELG platform.

The ELG base infrastructure will be able to receive, manage and run many images in parallel. This is considered
to be an important service for those organizations that cannot or do not want to host the tools/services
themselves (because, for example, they don’t have the necessary infrastructure). Therefore, the ELG base
infrastructure provides (a) Docker registries for all uploaded images increasing ease of use and speed of
deployment, and (b) a flexible and easily scalable environment for controlling and executing the containerized

LT tools/services based on Kubernetes! (see D1.2 and Section 5 of this document).

Catering for the cases where LT providers may not wish to provide their tools/services in a container, or where
the tools/services cannot be easily containerized, ELG, offering a sort of a brokering service, integrates them as
remotely invoked services. Such remotely invoked services must comply with RESTful APIs that ELG will define.
Service Level Agreements with providers of such remotely invoked services will be put in place together with

technical mechanisms for monitoring services availability.

3.3 ELG Language Resources

The catalogue of the ELG platform will be populated with LRs (non-functional content) and associated
metadata provided by the ELG partners themselves and through infrastructures and repositories managed by
ELG partners. ELG builds upon the META-SHARE policies for resources' sharing and attribution, and it will
include openly available and accessible resources, as well as resources that are available with restrictions,

including obligations for a fee.

Given the goal of ELG to act as the primary platform for LT in Europe, the ELG catalogue will build bridges to all
existing initiatives and reach agreements for harvesting and storing metadata and resources under mutually
agreed conditions and attribution, as well as business policies. Thus, ELG will act as a living observatory of LT,

consolidating existing and legacy tools, services, LRs, and information as well as newly emerging ones.

3.4 ELG LT-related meta-infomation
In addition to language services and data, ELG will also collect and make available for browsing and searching
information about what we call “LT related meta-information”, e.g., information on actors (companies,

individuals, research organizations, etc.) from the broader LT area, LT business areas, etc.

This meta-information leverages the experience, content and data from the LT-World Portal?; the LT-World’s

data are used for the initial population of the respective part of the ELG catalogue.

Mechanisms and functionalities, including crowdsourcing, web forms, etc., will be put in place for enriching this

type of content, in collaboration with the ELG Grid Community.

L https://kubernetes.io
2LT World (http://www.lt-world.org), an ontology-driven web portal aimed at serving the global LT community, was created by DFKI [J6rg
et al. 2010]. Although the portal is no longer in production, we plan to adapt the ontology and portal contents to the ELG objectives.

ELG 13/36

European Language Grid
D2.2 Specification of the ELG platform architecture

3.5

ELG services

flI'ELG

Table 1 presents in a concise way the different types of ELG offerings.

Type

Description

ELG will initially be populated with

Services and tools

Remote services

and tools

Language
resources, services,
tools, software

code

Information about
services, tools,

resources

Users of the ELG will be enabled to register,
describe, upload, search and deploy as well
as integrate containerized services, from
simple tokenization or part-of-speech

tagging to complex processing workflows.

Users of the ELG will be enabled to register,
describe, search and integrate functional

remote APIs.

Users will be enabled to upload, describe,
search, download datasets, source code

packages, trained models, embeddings, etc.

Non-functional catalogue entries, for
example, on a Language Technology

provider company or research centre.

GATE, GATECloud, UDPipe, TILDE's and
University of Edinburgh’s MT services,
SAIL LABS ASR, KWS, sentiment, age and

gender detection tools, etc.

Research and commercial services, among
others, GATECloud with 65+ services,
UDPipe, TILDE’s and University of
Edinburgh’s MT services, SAIL LABS and
EXPERT SYSTEM services

Datasets, models, tools, lexica, etc. from
META-SHARE, ELRC-SHARE, and ELRA
catalogue, ELRA's services for e-licensing

and e-Commerce

Information collected through projects
and initiatives such as, among others,
CRACKER, ELRA, ELRC, META-SHARE, LT
World, etc.

Table 1: ELG layers of content

ELG is open to all potential stakeholders of the LT and the wider Al communities. For those services that either

concern access to LRs with restrictions of use, language processing services that entail restrictive measures

(e.g., quotas), as well as for all services that support the integration of new services, datasets or meta-

information, a user registration service is set up. Registered users will be authenticated using established

protocols and authorized for certain tasks (editing, publishing, commenting, running services, etc.). User

management services will also enable the ELG platform to facilitate commercial use of services through

possible billing functions like volume/CPU based billing, and experiment, at the level of a prototype with online

or offline payments for use of the services.

Catering for the provision of stable service provision of both the ELG platform and the remotely invoked
language processing services, the ELG platform will be endowed with a range of monitoring services, including:
analytics of the use of the ELG platform, monitoring the availability of the different platform services, and

monitoring the availability of remotely offered services.

Access to the ELG platform, the LT tools, services and resources is provided through the feature- and content-
rich ELG website (portal). Using modern web development frameworks, the ELG website will include all
necessary information, documentation, training materials in different media (textual, video, etc.), facilities for
collaboration, user feedback (in the form of comments, reviews and possibly a form of multi-dimensional rating

of the functional and non-functional Grid content) as well as blogging and social media.

ELG 14/36

European Language Grid |||” E LG

D2.2 Specification of the ELG platform architecture
4 ELG platform architecture

4.1 Overview of the ELG platform architecture

An overview of the ELG platform architecture is depicted in Figure 1.

pu— PR PR R e
= mam) Catatogue Ul Test/Trial UN Admin Ui s st oo CMsS Ul
= z 2 7 : . ———
g 88 =]z v et

" o — - . .
= —
5 32 [I=]= =
' a & g
REST APY l
LT Service Execution

25 Orchestrator
(-4
oz i (0
=¥ e
<3 Message Middleware Béling Catalogue - %

T e g 3 — " — | Drucal

AT !' ‘\' Monitoring Metadata Harvesting :
SRV eVl e e
Docker Repository Flle & Object Storage
senens senenn Amaron $)

é ‘g‘ kubernetes ' Compatidie

F4

i B B EBwwm

sh feuee. T feees T

Nodes uge Non-functicnal content

Figure 1: Architecture diagram

The ELG platform is divided into three main layers: the base infrastructure, the platform backend and the

platform frontend (user interface, Ul).

The base infrastructure (Section 5) is the layer on which all the software components are deployed and run; it

includes the supporting tools that facilitate development and management of the ELG software.

The platform backend layer consists of all the components that empower ELG: for example, core components
such as the database, the index, the user management component as well as the LT tools/services; a detailed

description of the backend is given in Sections 7 to 10.

The Ul layer, briefly presented in Section 11, consists of the web pages of the CMS and the pages that render
the information that is stored in the database (metadata), pages for registering resources, the catalogue and
search interfaces, etc. The latter Ul (non-CMS) uses/consumes REST services exposed by the ELG platform

backend (e.g., catalogue application) in order to get the information needed for creating the respective pages.

4.2 Technical development roadmap and Minimum Viable Product (MVP) specification
In line with the ELG Description of Action, the development and roll-out of the ELG platform will be performed
in three major platform releases. The diagram in Figure 2 depicts the current development roadmap,
essentially annotating the ELG architectural diagram with the development priorities A (highest priority), B
(medium priority) and C (lowest priority). These priorities reflect and include the main critical functionalities to

be offered by each release.

ELG 15/36

European Language Grid
D2.2 Specification of the ELG platform architecture

WI'ELG

] © by Crestie arnd wobly
& legend e et prarvachene gl
{:) B 00 aedessessdesiagand\aaaneas
g - Coguetn TestTrial Ut . snald - iy
1 ® i | O e
Noll L1E- " | oot
K) 3 Eg o 8 C) oo ~on-!ummd = un(bOﬂd(oMM(: A
2 t . comtent uplcad Metadata ldv!of
e hatcy l Restecson on
= e (a) e l
Corderdt
us«wam
Llabdny, Service g
hatatnm g... Indes (.0,
& S wp N - unol
w 3 ()= = (I
The stas b to W i b —
devedo the MV? i svi Pl Monitoring mw
bewed o0 S
“Mm . O“if":ww — Helmtsmm Amaros 3
:M ég bubernates - " (mun.
2wt
e 42 == - w . =
cnjpam AR
- 55’; e
Nodes Non'-n:ba\.lwmm

Figure 2: Technical development roadmap and MVP

The features and functionalities as well as the LRs and language processing services targeted by each major

release are depicted in Table 2.

Release Features Due
D2.4 e backend components required for the operation of the catalogue: simple user M16
ELG platform management component, components supporting documentation/uploading,

(first release) storing/downloading of all resource types (tools and services, datasets, etc.),
APIs required for interacting with other layers
o first version of the guidelines on its use and provision of resources, instructions
for containerization and invoking of remotely accessible web services
o limited sets of tools and services and LRs
D2.5 e updated version of the platform including the components and APIs required for M26
ELG platform running language processing services (containerized services stored in the ELG
(interim and web services via REST APIs) directly in ELG
release) e updated (as/if needed) version of the guidelines on its use and provision of
resources, instructions for containerization and invoking of remotely accessible
web services
e updated catalogue with resources from ELG partners
D2.6 e updated version of the platform including management and maintenance of the = M34
ELG platform platform: monitoring of the platform, monitoring of remotely offered services,
(final release) platform usage analytics, prototype version of user billing and payment services
e updated catalogue with resources from ELG pilots and collaborating initiatives
Table 2: Platform releases and features per release
ELG 16/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

5 Base infrastructure

The base infrastructure is the layer on which the ELG platform (backend and Ul) are installed and run along
with the tools for managing the ELG-related software development. It (mainly) consists of the following parts: a

kubernetes cluster, a docker repository and a file and object storage.

5.1 Kubernetes cluster
The ELG platform software (backend and Ul), can be divided in two parts:

e the core components, e.g., the catalogue database, the metadata index, the web server, the catalogue
application, etc. which are being developed and maintained exclusively by the ELG technical team, and
e the set of LT tools/services that are integrated in the Grid and are developed either by consortium

partners or by external providers.

As discussed in Section 3.2, all aforementioned tools and services will run as containers since this facilitates
management and deployment. Currently, the most popular, open source, and robust system for managing,
scaling and orchestrating containerized applications is Kubernetes (in short k8s)?; for this reason, the ELG
consortium has decided to adopt it. Kubernetes works with a range of containerization tools; among them, the

Docker solution is by far the most widely spread and is thus selected also for ELG.

As prescribed in the ELG proposal, in the beginning of the project a subcontractor would be selected for WP1,
i.e., a cloud provider that will be in charge of installing, running and administering (on a daily basis) the base
infrastructure, under the supervision and responsibility of the ELG WP1 leader (the ELG coordinator). The
selection process has been completed and the Berlin-based company SysEleven* has been chosen; see D1.1

and D1.2 for more information.

After selecting the cloud provider, the ELG consortium collected the (hardware/software) requirements for a
proof-of-concept deployment of the ELG platform: i.e, a deployment that includes all core components (e.g.,
database, catalogue application) as well as a small number of LT processing services. Based on these
requirements and some initial discussions a development k8s cluster has been configured and delivered by

SysEleven to the ELG consortium.

In order to deploy an application in k8s, a set of config files (in YAML format) that specify the required
information must be created. Examples of such information are the Docker image location, the number of
replicas that will be deployed, the ports that will be exposed and the name that will be given to the deployed
service; the latter can be used by other k8s applications/services for accessing it. In ELG we have to manage
several software components and we also need different deployments of the platform, such as a single-node
deployment for development/testing, a deployment in the SysEleven cluster, etc. For these reasons we have
decided to use Helm®, a package manager for k8s that automates/facilitates deployments. Helm uses (generic)

templates for describing the k8s resources. For each different installation/deployment the templates are filled

3 https://kubernetes.io
4 https://www.syseleven.de/
5 https://helm.sh/

ELG 17/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
in with the respective configuration data by running a simple script. The generated config files are then

submitted to the cluster via the respective k8s API.

5.2 Source code and Docker repository

For hosting and managing the source code of ELG software components an account has been created at
GitLab®, which is a source code repository and a development platform (for Git projects) similar to GitHub” and
BitBucket®. GitLab was chosen because it provides for free numerous features, such as unlimited number of
private and public repositories, a built-in Docker registry for storing images and built-in continuous integration
(CI) and continuous development (CD) functionalities. In GitLab, Cl is automatically triggered when a commit is
pushed in a Git repository; a YAML file (.gitlab-ci.yml) defines the Cl pipeline that will be executed. By default
the pipeline runs at GitLab shared servers; however, it can also run in a dedicated machine by installing the
respective software (GitLab Runner®). A Cl pipeline typically includes source code compilation, running unit
tests and building the respective executables. There is also an option to add code for automatically creating the

respective Docker image and pushing it to GitLab’s built-in Docker registry.

5.3 Storage

For hosting/storing the ELG non-functional content, i.e., corpora (raw or LT processing results), statistical and
machine learning models, as well as lexical/conceptual resourses (e.g., lexica, ontologies, term lists) used in LT
processing, a storage solution is required. We plan to use an S3-compatible Object Storage solution that is

hosted by SysEleven for this functionality.

We are also exploring the option to create a generic ELG-specific Storage APl interface that will include
methods for all required storage operations in order to make the platform more modular and flexible. One
implementation of this interface will use SysEleven’s S3-compatible storage (as already discussed) and another
will use a local disk; a configuration file will specify which solution will be used. The local disk implementation
may prove useful for a local, private deployment of ELG; e.g., an installation running on the premises of an

institution/company without internet access for running LT services on sensitive data.

6 ELG metadata model

The ELG-SHARE metadata model (or alternatively, in short, ELG metadata model) will be used for the
description of all entities of interest to the ELG target users. It constitutes the backbone of the ELG catalogue,
which brings together language processing services and tools, LRs (datasets of different types and media,
models, lexica, terminologies, etc.) as well as agents, activities, technologies and business application areas

related to LT (Figure 3).

6 https://gitlab.com/european-language-grid
7 https://github.com

8 https://bitbucket.org/product/

9 https://docs.gitlab.com/runner/

ELG 18/36

European Language Grid |||” E LG

D2.2 Specification of the ELG platform architecture

T
Apph‘ahon

Satellite Entity o

Figure 3: Overview of the ELG-SHARE entities

Its main objectives (to be further refined during the project course in order to accommodate the evolving user

requirements, see D2.1) include the following:

e cover needs of discoverability/findability of resources and related entities

e satisfy documentation needs for all of them at different levels of granularity

e address (at the metadata level) interoperability requirements of resources belonging to the same types
and media, but coming from different sources with different descriptions, as well as between
resources of different types and media (e.g., between datasets and services to be used for their
processing)

e facilitate accessibility by human users and, where possible/required, machines (e.g., by stating direct
download/execution locations)

e provide an overview of the LT landscape allowing users to navigate through applications, products,
datasets, actors, projects, etc. linked through the LT activities they are engaged in

e act as a bridge between the catalogue and the CMS information content where appropriate, e.g., the
training material intended to promote awareness of LT to users (citizens, SMEs, industry, etc.)

interested in using it but less knowledgeable about it.
The main principles and strategies employed in the design of the ELG-SHARE schema consist of the following:

e adopt and adapt the FAIR principles!® [Wilkinson et al. 2016] to the needs of ELG

e re-use or map to existing standards and best practices, especially other metadata schemas and
vocabularies, and previous relevant initiatives for the documentation of LRs and LT tools/services, etc.

e be flexible enough to support varying degrees of documentation completeness

e organize the schema elements and accommodate common vs. particular features of resource/media

types

10 https://www.forcell.org/group/fairgroup/fairprinciples and https://www.go-fair.org/fair-principles/

ELG 19/36

European Language Grid |||” E LG

D2.2 Specification of the ELG platform architecture
e normalize user input where appropriate but also allow for free user input.

The model builds upon previous work from (a) the META-SHARE metadata model*! [Gavrilidou et al. 2012],
which caters for the description of language resources and language-processing technologies, its application
profiles, namely ELRC-SHARE?? [Piperidis et al. 2018], OMTD-SHARE®? [Labropoulou et al. 2018], and CEF-AT,
which extend, restrict and adapt the basic model to specific domains and areas (e.g., public domain resources,
text and data mining domain, etc.), and the MS-OWL* [McCrae et al. 2015], which is the RDF/OWL
representation of the model; (b) the LT-World and other catalogues and projects for the enrichment of the
descriptive model of related entities (Figure 4). More recent developments in the metadata area at large are
also taken into consideration for the consolidation of the new model. The proposed model is currently under
discussion and revision by members of the Consortium. A pre-release will be made available for review and
feedback to a wider group with experts from the Grid community, mainly NCCs and the ICT-29b projects, as
well as to other potential users, through face-to-face dissemination events and electronic communication. The
final model will be documented in D2.3 (due M8); minor adjustments may be needed during the project

lifecycle, which will be documented together with the platform releases.

META- MS- 'l ELRC- OMTD- CEF AT ELG-
SHARE OWL /| "SHARE SHARE SHARE
Fagn 0o Type oRDFOWL eSarre ertities but oFocus on TOM eAdse on of *lomso Aation &
Corpom, ' mpdeamentation of ondy for tens oAt on '-" - |-‘;va)
Lesicab ' conceptud NETA - SHARE with oEmphasis on pubic "pubtiication” oGaared o BV slirhirg wit |
resources ome Changes e ohuatn of st AW ’_’ Y ’3:“'." actrebiea
Language slmgrovements j# 9 jcompone-ts & oUnly software ".
deacrptons logal metadata apem . ,(';:.j not yet .l ,-'JXI prncpies
Toola Services dstrisuson)| ofocus on putished)50 with
Neda type et ohma e crginet - 2ot irterogerabl oy RDF/OWL
aSo, wieo, mage Ol et xe o-riphi-g XS0 ::--i:-:lv.
el bzt - . share's — oJSON LD enpont
CRACKERN araevire
L

Figure 4: Evolution of the ELG-SHARE model
The ELG-SHARE data model comprises of the following entities:

¢ language resources and technologies, further classified into:

11 http://metashare.ilsp.gr/knowledgebase/homePage

12 https://gitlab.com/ilsp-nipli-elrc-share/elrc-share-repository/tree/master/misc/schema/ELRC2

13 https://github.com/openminted/omtd-share-schema and http://w3id.org/meta-share/omtd-share/ (RDF/OWL implementation of part
of the schema)

14 http://purl.org/net/def/metashare

ELG 20/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
o corpora, i.e., datasets of mono/bi/multilingual text documents, audio/video recordings,
multimedia datasets, parallel corpora, translation memories, etc.
o lexical/conceptual resources, including lexica, ontologies, term lists, gazetteers, computational
dictionaries, etc.,
o language descriptions, which mainly refer to computational grammars, statistical and machine
learning models,
o tools/services, i.e., pieces of software offered as locally executable codes or as web services,
hosted and running in the ELG cloud or remotely running
e related/satellite entities, such as actors, be it persons or organizations that have created or curate the

resources, or projects that have funded them or where they have been used.

To fulfill the ELG objectives, the metadata model, as regards data resources and processing tools/services, will
cater for their full life-cycle, integrating information about the resource identification, type and technical
features, deployment requirements, legal rights and obligations, associated documentation, etc. As regards
related entities (i.e., actors, projects, etc.), it will include all features required for their identification and all
necessary information describing and promoting relevant activities and products, taking into account, where

appropriate, GDPR issues for persons.

All this information leads to a complex and demanding schema; to ensure flexibility and uptake by resource

providers, the elements are classified into three levels of optionality:

e mandatory: elements that are necessary for intended purposes
e recommended: elements that can help the current or future use of the resource, or useful information
that providers have not yet standardized

e optional: all remaining information.

In addition, all the properties and relationships are organized in a modular structure, following the principles of
the component-based mechanism (Component MetaData Infrastructure, CMDI), according to which
semantically coherent elements are grouped together to form components [Broeder et al., 2008], see Figure 5.
For instance, the licensing component includes elements such as the name and URL of a licence, attribution
text, copyright holders, information on fee, etc. Some of these components, mainly those including
administrative features, are common to all resource types, while the technical features are particular to the

specific resource and media types.

The schema will be made publicly available in the form of an XML Schema Definition (XSD) including elements
from an RDF/OWL ontology, thus adhering to FAIR principles and facilitating the linking to other schemas and

catalogues.

At this stage, we have specified only a subset of the mandatory and recommended elements pertaining to
tools/services and text corpora that will be used for the MVP. This is used for the design of the database and a

draft documentation of the entries that will populate the initial catalogue.

ELG 21/36

European Language Grid
D2.2 Specification of the ELG platform architecture

~erdete, g
elarant e e
~ardeobey

X Lot gt

u

bt

/-: “ n

Figure 5: Simplified subset of the metadata schema

7 ELG platform backend

flI'ELG

LRT

The ELG platform backend comprises three major components: the ELG platform catalogue (in short ELG

catalogue), the ELG (platform) language processing backend services and the ELG (platform) management and

support backend services. They are described in detail in Sections 8, 9, and 10 respectively.

8 ELG catalogue backend

The ELG catalogue backend is designed and implemented so as to provide all the functionalities needed for the

unobstructed and smooth operation of the platform. The functionalities of the catalogue backend, to be served

through a secure REST API, include:

e Metadata management, i.e., creation, retrieval, update and deletion of metadata records

e Content management, i.e., upload of content (functional and non-functional) associated with

metadata records

e Metadata indexing for search and fast retrieval

e User management, i.e., user authentication and authorization through well defined access control

policies

e LT services requests, i.e., dispatching and handling requests for LT processing services that are hosted

by ELG

e Billing information
The ELG catalogue backend mainly consists of three components:

e The core software that implements the REST API (Django >=2.2.2)

ELG

22/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
e The database software used for persistent storage of the data needed for all the platform operations
(PostgreSQL >=11.3)
e Asearch and analytics engine aiming to index a subset of the data stored in the database, in order to
provide full text and faceted search functionality on the metadata, as well as usage analytics
(Elasticsearch >=6.8.2)

8.1 ELG catalogue backend development framework

The needs of the ELG catalogue backend determine the criteria for selecting the most suitable web
development framework. These needs include a rapid development environment for building RESTful APls,
without, however, compromising reliability, scalability and security. Furthermore, community support is a

strong indication of the popularity and foundation of a given framework.

Django is an open-source framework for web applications based on Python. Oriented towards rapid
development and pragmatic, clean design, it features simplicity, flexibility, reliability, and scalability. It is also
supported by detailed documentation provided by the Django Software Foundation (DSF)'® and comes with
many out of the box features that favour rapid development, while at the same time it is fully customizable in
order to suit the needs of a specific application. A large collection of over 4000 useful packages and utilities are
also available, which demonstrates the popularity of the framework and the size of the Django community, in
terms of contributions and support. It is used by a considerable number of companies and organizations like,
Bitbucket, Instagram, NASA, YouTube, DropBox, etc., and has also served as a reliable solution for the
development of repositories led by ELG partners, such as META-SHARE®, ELRA catalogue!’, ELRC-SHARE??,
CLARIN:EL'®, QTLaunchPad®® and the catalogue of CEF eTranslation services??.

In terms of scalability, since the components of the Django framework are not tightly coupled, they can be
unplugged and replaced whenever the application requires more specific solutions. Security is handled by
hiding the source code from direct viewing on the Internet, along with built-in protection against cross-site

scripting attacks and SQL injection attacks.

Django supports almost all databases, and specifically provides ready to use and strong solutions for relational
databases. The Object-Relational Mapper (ORM) is one of the key features of Django, providing an elegant and
powerful way to interact with the database in a seemingly unified way, hiding the details required by each

database.

8.2 ELG database and indexing

Database solutions come in two main types: SQL (RDBMS) and NoSQL —in other terms, relational databases
and non-relational databases. The key differences between the two are the way they are built, the type of
information they store, and the way they store it. While SQL databases (e.g., MySQL, PostgreSQL, etc.)

structure the information in tables that connect to each other with relations, NoSQL databases (e.g., MongoDB,

15 https://www.djangoproject.com/foundation

16 http://www.meta-share.eu

17 http://catalog.elra.info/en-us/

18 https://elrc-share.eu and redeployments of it like ELRI (http://www.elri-project.eu/)
19 https://www.clarin.gr

20 http://qt21.metashare.ilsp.gr/

21 https://cef-at-service-catalogue.eu/

ELG 23/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

Cassandra, etc.) are document-oriented, that is, they store the information in a single “Document” object

within “Collections”, much like file folders.

The main reason for choosing NoSQL over SQL is usually performance and the need for JSON storage.
Performance in NoSQL is considered better when compared to that of an SQL database; however, write
safeguards and database transactions are not inherently supported by NoSQL. NoSQL solutions are, therefore,
considered to be prone to mainly integrity errors and increase the risk of corrupted data. Furthermore, current
security issues, such as lack of encryption support for the data files, vulnerability injection attacks (via
JavaScript or string concatenation), denial of service (DoS) attacks, make NoSQL a weak choice [Okman, Lior et
al. 2011]. JSON storage can be easily applied in an SQL database, especially PostgreSQL, which provides a
searchable JSON field.

For the above reasons, the ELG platform backend adopts a relational database solution for the ELG catalogue
(i.e., LRTs and satellite entities metadata), billing information and other administrative data as well, such as
user management, storage and data processing information and overall usage statistics. Selected data from the
database will be indexed by a search engine that will handle user queries on the metadata and provide

analytics on statistical information.

8.2.1 Database requirements and criteria for selection

Sensitive information, like user management, billing and administration, require security and reliability on
database transactions. PostgreSQL and MySQL are among the most popular relational databases. Although
MySQL appears to be the most commonly used??, PostgreSQL is more capable in terms of schema support for
Django, whereas MySQL lacks support for transactions around schema alteration operations. Schema alteration
operations is a built-in feature in Django (Django Migrations) and is considered as highly crucial during the
rapid and continuous development phase and beyond. Moreover, the Django ORM provides support for

PostgreSQL specific fields (JSON, Array), which are well suited for the metadata model implementation.

PostgreSQL is committed to conform to the ANSI-SQL:2008% standard, in order to support the official features
of the SQL language, thus facilitating portability of the SQL code across database systems. It is fully ACID
(Atomicity, Consistency, Isolation and Durability) compliant, and is well-known for its solid referential and
transactional integrity. Validated data storage is ensured by primary keys, restricting and cascading foreign

keys, unique constraints, not null constraints, check constraints and other data integrity features.

In terms of data replication for improved availability, the ELG backend will use PostgreSQL’ s synchronous
replication feature between the master and the slave databases. Along with providing user access control,
host-based access control, and user authentication, PostgreSQL also natively provides the capability to encrypt

client/server communications using SSL as an additional security feature.

8.2.2 Indexing requirements and criteria for selection
Data search and retrieval is one of the ELG backend’s main components. In order to provide advanced search

capabilities and fast retrieval, it is necessary to utilize an indexing and search engine solution on top of the

22 https://insights.stackoverflow.com/survey/2018#technology-_-databases
2 https://www.iso.org/standard/45498.html

ELG 24/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
primary database. The most popular open source search engines are Solr** and Elasticsearch?®. Both solutions

are well established and documented, with large community support and high performance ranking.

In terms of APl implementation, Solr implements a Java APl with Solr) — or SolrNet (for Microsoft technologies)
— but also provides a set of REST APIs. However, Elasticsearch has a more Web 2.0 REST API, which makes it the
preferred choice for modern RESTful applications. The REST API feature of Elasticsearch is suitable for the ELG
catalogue backend, which will also expose its services through REST endpoints and is, therefore, the preferred
software to be used for the needs of the ELG platform. Moreover, The REST API solution in combination with
Elasticsearch has already been adopted by the backend developing team in the implementation of the

catalogue of CEF eTranslation services.

Elasticsearch also provides real-time log analysis and visualization and, combined with other tools like Logstash

and Kibana, it can deliver high level visualizations of statistical data stored in the database.

Security in Elasticsearch is easily configurable at various levels since version 6.8, which comes with TLS

encryption, native and file-based authentication, and role-based access control in the default distribution.

8.3 Lifecycle of data and metadata in the ELG platform
The ELG database will store metadata records, along with other administrative information, such as the
existence of a dataset for a given record and the visibility status of a metadata record. The ELG platform

backend will distinguish 3 visibility statuses for metadata records:

e internal, used as the initial status for all metadata records

e ingested, used as an intermediate step before making the record publicly available; accessible by all
users of an editor group (see Section 10.1)

e published, for finalized metadata records; published records are available for searching and browsing

on the public catalogue.

The combination of users' access rights and the visibility status of a metadata record yields enhanced
authorization possibilities to the user management module giving metadata record owners extra leverage and

control over the visibility and accessibility of the metadata record repository.

Metadata in the ELG catalogue are subject to all CRUD (Create, Read, Update, Delete) operations, based on
user authentication and authorization to perform certain actions. The creation of a metadata record in ELG can
be carried out either from within a dedicated metadata editor or by uploading files containing structured
metadata descriptions that conform to the ELG-SHARE metadata schema. The ELG platform backend makes use
of the concept of ownership (creator) of a metadata record by a user and/or user group in order to filter the

subset of the records that an authenticated user is allowed to perform actions on. Those actions include:

e Metadata retrieval
e Metadata update

e Metadata deletion

Metadata update is allowed only on the metadata information that are not shared by, and thus affect, other

records of the database (e.g., licence information, descriptions of entities such as organizations or persons); the

24 https://lucene.apache.org/solr/
25 https://www.elastic.co/

ELG 25/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

shared information is restricted to users with specific permissions, based on the adopted user management
policies. User management policies also determine permissions for full metadata retrieval and record deletion.
Resources on the catalogue are assigned unique identifiers, associated with the appropriate metadata records

and bound to the same operation policies.

However, while a resource included in the ELG catalogue must be related to a metadata record, the same does
not hold in the opposite direction of the relationship, i.e., it is not mandatory for a metadata record to be
related to an actual language resource hosted in the ELG platform, since it may describe and just provide a

pointer to a resource that is stored elsewhere.

8.3.1 Catalogue population

8.3.1.1 Metadata editor

The ELG catalogue backend is connected to a dedicated Ul frontend, which provides an interactive
environment to be used for metadata editing. The editor environment exposes the metadata model to the
authenticated and authorized users, ready to accept input through a number of user friendly forms, designed

by a UX expert.

The editor module caters for the guided creation and update of metadata records with descriptions and
recommendations for all input fields and guarantees the validity of the data to be inserted into the database.
Input data validation will also be accompanied by well defined interactive messages informing the user about

potential input errors.

8.3.1.2 Batch metadata uploading

In addition to the metadata editor, users will be able to create or update existing resources by uploading files
that contain metadata descriptions conformant to the ELG-SHARE schema in JSON or XML format. The backend
checks, at import time, that the input data are valid and accepts or rejects the user’s request, by providing
appropriate messages. Batch upload will be available for new metadata records, accepting a compressed
archive (e.g., .zip, .tar, etc.) containing the input, while batch update capabilities will be further explored. Basic
CRUD and management operations for metadata records are also planned to be available through ELG API

clients that will enable the interaction with the platform through a command line interface.

8.3.1.3 Metadata harvesting

Alternative ways of populating the ELG catalogue database include metadata harvesting (potentially with data)
from other repositories. The harvesting policies as well as candidate source repositories (e.g., ELRC-SHARE,
META-SHARE, catalogue of CEF eTranslation services, CLARIN, etc.) will be explored and well defined source-
target schema conversion tools are foreseen according to the preferred harvesting protocol (e.g., OAI-PMH,

ResourceSync or proprietary).

8.3.2 Uploading and storing non-functional content

Uploading and storing non-functional content to ELG platform is controlled by the user management module
and guarantees that the user has the required permissions to upload a dataset for a given metadata record and
also assumes the user’s legal liability for the uploaded data. Datasets will be stored either at SysEleven’s S3-

compatible storage solution or at the ELG-specific storage solution, based on the preferred configuration.

Administrative information regarding the uploaded data such as checksum, identifier, creation date,

modification date, related resource, etc. will be stored in a dedicated database table, thus separating the

ELG 26/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
metadata description from the information needed for the management of the resource itself, which is used

only internally by the platform.

8.4 Search, browse, view and download functionalities

A range of database fields (metadata elements), such as resource name, description, languages, licences,
format, character encoding, etc., will be selected (and updated according to increasing requirements) for
indexing by the Elasticsearch engine in order to facilitate full-text and faceted search primarily on metadata
records that are marked as “published” (public visibility status). Faceted search will provide a mechanism to
filter search results by combining indexed metadata fields presented to the user as clickable facets that will
also bear aggregations on the available facet values. At a preliminary stage the following facets are considered:
resource name, resource type, media type, language(s), licence(s). Facets (like indexing elements) are also

prone to change responding to emerging user requirements.

The search results feature pagination for rapid rendering of information and browsing by the frontend, while
the detailed metadata view utilizes direct calls to the respective endpoints in order to retrieve the full

description of the resource.

Downloading of resources will be accessible through the record’ s detailed view in accordance with the legal
and commercial terms for its distribution, provided that the record has an associated downloadable resource
(dataset or tool). During a download request, the backend ensures that the user agrees with the resource’ s
legal terms and the payment/billing policy if needed, before providing the actual resource. In other cases, the
user may be prompted to contact an entity (person or organization) in order to ask for further information on

how to obtain the requested resource, if the resource’ s licence does not permit direct download.

8.5 Internal APIs between core components
The ELG catalogue backend is fully RESTful, that is, all supported functionalities will be available through the

catalogue’ s secure REST API, which includes the following endpoints used by the frontend:

e Create a metadata record

e Retrieve a metadata record

e Update a metadata record

e Delete a metadata record

e Retrieve a list of metadata records; based on user permissions, this list may be a subset of the overall
record list

e Change the ownership of a metadata record

e Change the visibility status of a metadata record (e.g., ingested = published)

e Upload/Replace/Delete a resource for a given metadata record

e Search for resources

e Request processing of a resource hosted in the ELG platform

e Handle user registration requests

e Handle user authentication and authorization

e Handle billing management

The catalogue API will be updatable in order to accommodate increasing functionality needs and will also

expose an automated documentation that reports on all the available endpoints and allowed operations (HTTP

ELG 27/36

European Language Grid |||” E LG

D2.2 Specification of the ELG platform architecture

methods). An example of the JSON response of the ELG catalogue API as well as documentation generated by

the Core API can be seen in Figure 6 and Figure 7, respectively.

Resource Metadata Record List [conows) v -]

[E oo

METHOD ENDPOINT

Allow

Figure 6: JSON response of an ELG catalogue APl endpoint using the GET method

Access to the backend REST APl is mainly available through the frontend where all operations are performed
from, using JSSON Web Tokens for user authentication and authorization and Cross-Origin Resource Sharing
(CORS) rules in order to determine the origin of the API calls. Alternative ways of access to the APl include the
implementation of a command line interface (API client) that will serve the main metadata and data

management functionalities.

ELG Backend API

resourcemetadatarecord

o »
® ~
® -
° -
L3
® -
®~
o~
® -
o~
® -
o~
® -
® -
® -
® -
® -
@ -
® -
® -
o=
® -
® -
® -

Figure 7: ELG backend APl Documentation generated with Core API

ELG 28/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

The implementation of the catalogue backend API is accompanied by a descriptive documentation for all
available endpoints, using the Core API?® Python package, which will be automatically updated as the

enrichment of the API progresses, based on emerging requirements.

9 ELG platform LT processing services

As already mentioned, one of the main goals of ELG is to bring to the same platform a substantial number of LT
tools/services of various classes (IE, MT, ASR, etc.). For each such class a specific API is specified (Task 2.5) in
order to standardize how the LT tools/services will communicate and be integrated with the rest of the ELG
platform; these APIs along with containerization technology (Docker) will facilitate at large extent the
integration and the deployment of the LT services. LT service execution will be provided to end-users via an
appropriate RESTFul API.

9.1 Messaging middleware

Each containerized LT tool/service communicates with the rest of the ELG platform (i.e., consumes processing
requests, produces responses, optionally produces progress reports) via an appropriate messaging middleware
and the respective queues. For messaging middleware we have selected the widely used RabbitMQ broker?’
since it provides a variety of configuration options, it is simple and there are also RabbitMQ clients/libraries in
various programming languages (e.g., Java and Python). An alternative message middleware solution that was
explored and that we might adopt in the future is the Kafka system?®. Kafka has been reported to achieve (if
appropriately configured) high throughput and high availability?’; these two features might be important, for

example, in the case of data processing overload.

9.2 Internal and external (LT) processing APls

The messaging system and the request/response queues could have been publicly exposed to the internet; in
such a scenario the respective clients would be able to communicate directly to the backend LT tools/services.
However, we have instead put an LT service execution orchestrator component in the front for the following

reasons:

o All functionalities relevant to LT processing are implemented there and not in the catalogue application
which is designed for offering services on the metadata of the resources; e.g., search, view, insert,
delete, update; see Section 8.5 for more details. In this way we achieve a clean separation between
functionalities and the platform (which is more modular).

e For handling appropriately processing requests when the system is overloaded; e.g., put the request in
a waiting queue, start an LT service (in k8s) that is not currently available, etc.

e Make easy the integration of the execution backend with the catalogue application and the rest of the
platform (e.g., storage). This integration enables, for example, the processing of the datasets that are
hosted in the ELG platform and listed in the catalogue; in this scenario the LT service execution
orchestrator fetches the data from the storage (e.g., S3), generates the respective LT internal API

messages (T2.5), collects the responses and creates the resulting dataset.

26 https://www.coreapi.org/

27 https://www.rabbitmg.com/

28 https://kafka.apache.org/

29 https://itnext.io/kafka-vs-rabbitmqg-f5abc02e3912

ELG 29/36

European Language Grid |I|f| E LG
D2.2 Specification of the ELG platform architecture

The LT service execution orchestrator exposes a REST APl which can be used by any client; e.g., the ELG
catalogue Ul or a command line tool (e.g., curl). In this way we have a common gateway for all types of

processing requests (datasets vs. single documents, hosted vs. non-hosted datasets, etc.)

The LT service execution orchestrator is implemented in Java using the Spring Boot framework®°. Spring Boot
was selected since it (a) facilitates application configuration, (b) allows the creation of a consolidated
standalone application which can be easily Dockerized and deployed, (c) provides an easy way to create REST
services, and (d) provides easy integration with a large number of tools and libraries (e.g., databases,

messaging middleware, storage solutions).

Currently, the proof-of-concept (POC) LT service execution orchestrator that we have developed offers just one

REST POST service for processing one document; this service is specified below.

Service endpoint Request Response
https://{LTServExecOrchIP}/process { A JSON with results
Document/{ItService} "id": "anid",

"content": "data to be processed"

}
LTServExecOrchlIP is the IP where the LT service execution orchestrator is running at, and /tService is the ID of
the LT service that we want to use. The POST payload of the request is a document processing request and the
response is the processing result; both request and response are encoded in JSON format. When the
orchestrator receives a document processing request it creates an appropriate T2.5 message, pushes it to the

respective queue, collects the processing response and returns the result.

The current POC orchestrator has been integrated (via RabbitMQ queues) and tested with two backend
information extraction (IE) services that were developed by ELG partners: ANNIE3! from the University of
Sheffield and Cogito3? from Expert Systems. Each one is an example of the two ways that can currently be used
to integrate an LT service in ELG.

o Direct integration: One Dockerized application that contains the LT service and directly interacts with
the respective RabbitMQ queues; ANNIE is created in this way.

¢ Integration via an adapter: It consists of two Dockerized applications; one adapter that interacts with
the queues (as in direct integration) and translates the messages to the actual LT service and the LT

service itself. Cogito has been developed/deployed in this way.

An example of interaction with the described “processDocument” web service using the orchestrator instance

that is deployed at SysEleven’s k8s development cluster (see Section 5) is the following.

Service endpoint Request Response

https://185.56.128.145/ {"id":"123","content":"lan {"metadata":{"id":"123"},"response":{"type":"annotatio
dev/rest/processDocum lives in Sheffield"} ns","annotations":{"Person":[{"start":0,"end":3,"featur

ent/srv-annie-ie es":{"gender":"male","kind":"firstName","rule":"GazPer

’

30 https://spring.io/projects/spring-boot
31 https://gate.ac.uk/annie.html
32 https://www.expertsystem.com/products/cogit-cognitive-technology/

ELG 30/36

European Language Grid |||” E LG

D2.2 Specification of the ELG platform architecture

sonFirst","firstName":"lan","ruleFinal":"PersonFinal"}}],
"Location":[{"start":13,"end":22,"features":{"kind":"loc
Name","rule":"InLoc1","locType":"city","ruleFinal":"Loc
Final"}}],"Organization":[],"Date":[]}}}
The ANNIE service is called by using the respective id "srv-annie-ie" and a document is sent for processing (“lan
lives in Sheffield”). The response is in JSON format (actually, it is the LT-internal API message that was returned)

and contains the named entities that ANNIE has extracted.

The current version of the orchestrator uses the relevant Spring Boot Swagger®? libraries to automatically
generate documentation (HTML pages) for each exposed web service. This way can keep more easily synced

the code with the respective documentation.

Paramenen Try B owt

e Cuaner e an

i e tFYix e st g Fe st

Verpnes Srae e gy

Figure 8: Swagger-based documentation for execution REST API
In the future we plan to extend the orchestrator by:

e Offering more processing options; the respective web services at LT service execution orchestrator will
be added. For example, we plan to add a service that enables the processing of datasets that are
described and hosted in the ELG catalogue.

e Integrating it with the ELG generic storage solution, which either uses a local disk or a cloud solution
such as S3.

e Adding authentication and authorization mechanisms so that only authenticated users can use the
REST API.

e Adding mechanisms for handling failures (on the processing backend).

In addition, we plan to add the option of calling/using an LT service that is deployed outside of the dedicated
ELG base infrastructure (SysEleven cluster). For this task, we will exploit our experience from the OpenMinTeD
project, where a web service specification was created for that reason3*; however, we also have to take into

account the LT service internal APIs (T2.5).

33 https://swagger.io/
34 https://openminted.github.io/releases/processing-web-services/1.0.0/specification

ELG 31/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

9.3 LT processing services registration

Currently, the process of integrating a new containerized LT tool/service is manual: a Docker image is prepared
by the respective provider; the image contains the required operating system and software dependencies. The
LT service that is packaged includes code for (a) interacting with the messaging middleware (e.g., RabbitMQ)
and (b) consuming/generating the required LT internal APl messages. A deployment config file for k8s that
points to the provided image is prepared and executed based on the Helm package manager; for more
information see Section 5. Then we test whether the deployed application is able to receive messages posted
by the LT service orchestrator and appropriately respond. This “trial and error” process is continued until the LT

tool/service is correctly integrated to the platform.
In the future we plan to automate this procedure to the extent possible, implementing the following steps:

e Template, example code and instructions are publicly provided to help developers wrap their LT
tools/services. Validators (e.g., scripts) are also provided for checking that the wrapped tool/service is
able to consume request and write the respective responses.

e We create web pages in the catalogue for registering an LT service; there some minimal metadata will
be provided e.g., a pointer to the Docker image.

e The registered service will not directly be published to the ELG catalogue. An administrator will receive
the registration request and will run some tests offline. The approval of the LT service by the
administrator will trigger publishing to the catalogue, following the lifecycle described in Section 8.3,

i.e., internal = ingested - published.

10 ELG platform management and support services

Apart from the ELG basic/core services (e.g., catalogue, CMS and LT services execution) there are also modules
that (a) manage users and control access, (b) monitor the whole software stack, (c) gather/generate reports
(analytics) for the usage of the ELG platform and resources, and (d) facilitate licensing and billling. These

modaules are presented in the sections that follow.

10.1 User management
The user management module of the platform enables ELG administrators to manage user access to various
resources and operations of the ELG platform and includes two main submodules: registration and

authentication/authorization.

10.1.1 Registration

Users may register at the platform by providing a set of mandatory information (at least username, password
and email). A registration confirmation mechanism, which requires the user to respond to a “Confirm
registration” email sent after successful registration to verify the email address and activate the account, is

planned in order to prevent bogus registration requests.

10.1.2 Authentication/Authorization

The authentication process is based on username-password pairs; i.e., as usual, a user is asked for a username-
password which is sent to the server and compared with the ones stored in the database. An authenticated
user is provided with a JSON Web Token with a predefined expiration date. JSON Web Tokens (JWT) is an open,

ELG 32/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

industry standard RFC 7519%> method for representing claims securely between two parties (users, servers, or
any other combination of services). The JWT, in the case of ELG, is used between the user's web browser and
the backend services to ensure that only authenticated users can interact with the platform when this is
required. Security of the communication between the parties is ensured by digitally signing JWTs with an
encryption algorithm, so the receiving party can trust the transmitted information. JWTs are compact and small
enough to be sent through a POST request in an HTTP Header, encompassing information that the receiving
party needs (e.g., username, user permissions, token expiration date, etc.). Apart from the ELG platform
registered users, we are also exploring the option (if it is required) to give access to single sign-on (SSO) users

(e.g., Shibboleth) who are authenticated by external identity providers (IdPs).

User privileges or access levels related to ELG’s resources and services are handled by the authorization
submodule. Authorization is based on user roles and groups, assuming specific access permissions to
operations like resource creation/update/retrieval/deletion/download or service execution. The main user
roles include “administrators” and “editors” (Figure 9). User roles can be extended and refined in order to
accommodate the needs of the different user types as described in Section 2. Furthermore, defining editor
groups will also be possible. Users belonging to an editor group, managed by appointed group managers, can
access all resources created by the group, if these resources are in published or ingested status (internal

resources are visible only to their creator(s)).

ADMINISTRATORS

EDITOR GROUP 1

Resource 1
Resource 2
Resource 3

EDITOR GROUP 2

Resource 4
Resource 5
Resource 6

Figure 9: Basic user roles, user groups and permission scopes in the ELG platform

35 https://tools.ietf.org/html/rfc7519.html

ELG 33/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

10.2 Monitoring

For monitoring the ELG platform, we can use the cAdvisor (container Advisor)® agent. cAdvisor is installed by
default on all kubernetes cluster nodes and it collects metrics for CPU, memory, filesystem, and network usage
for all containers that run in the node. In order to gather these metrics/statistics from the cAdvisor agents the
Prometheus system can be used®’. Prometheus provides (a) a query language and a dashboard for querying
and visualizing the gathered metrics and (b) mechanisms for defining alert conditions and sending the

respective notifications; the aforementioned features are very useful in monitoring the whole ELG platform.

10.3 Analytics

Analytics derived from data, such as logs, resource views, downloads, LT service executions request/jobs or any
other information that is stored in the database can be created based on the Elasticsearch engine, by extending
its usage with Logstash and Kibana, the main components of the Elastic Stack®®. Logstash is a system for
ingesting data (e.g logs), transforming them and finally indexing them in Elastic, and Kibana a data visualization

plugin for the indexed content.

10.4 Licensing, billing and payments

Licensing terms will be assigned by the resource provider, preferably with standardized licences. Free open
access licences for data resources and software will be encouraged where possible. However, providers will
also be able to share their content on a charge base. Pre-defined billing schemes are currently under discussion
looking at the various possibilities of offering content: e.g., once-off payment for downloading resources,
subscription-based billing, billing per quota/volume usage or running instances, discounts for academic users or

non-commercial use, etc.

In order to provide access to an LT service or LR according to its licensing terms, we are investigating the use of
a licence server and/or an ELG-specific licence management component. A licence server controls which and
how many instances of a software are allowed to run; in ELG, this server can be used to control how many
containers of an LT tool can be used/run within our k8s cluster. The same functionalities can be provided by an
ELG-specific software by exploiting information that is given from the LT service provider, such as number of
replicas allowed, etc. The selection of the final option will take into consideration solutions that can be easily

installed/configured and integrated with the rest of the platform.

11 User interface

The user interface for the catalogue, the admin pages, etc. is created using Angular (version >=7), a popular
javascript framework. For creating/rendering the respective HTML web pages, the backend REST services are

used (e.g., catalogue REST API) to get the required information in JSON format.

For the Content Management System (CMS) the Drupal package has been selected. A Docker image for Drupal

has already been created and used for deploying it to our development k8s cluster.

36 https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
37 https://prometheus.io/
38 https://www.elastic.co/products/

ELG 34/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture
The design of the Ul layer and the technologies used will be described in detail in the respective deliverables of

WP3, D3.1 and its updates (D3.2, D3.3. and D3.4).

12 Nginx server as a gateway

All publicly available ELG services are served/proxied via an Nginx web server (an ingress controller). For each
service (e.g., CMS, LT service execution, catalogue) that is exposed to the internet an appropriate k8s config file
is created that specifies the mapping between a publicly accessible URL/endpoint to the respective backend
service name (and port) deployed at the kubernetes cluster. The Nginx ingress controller is also deployed as

container in the k8s cluster.

ELG 35/36

European Language Grid |||f| E LG
D2.2 Specification of the ELG platform architecture

13 References

Broeder, Daan, Thierry Declerck, Erhard Hinrichs, Stelios Piperidis, Laurent Romary, Nicoletta Calzolari, et al.
(2008) "Foundation of a Component-Based Flexible Registry for Language Resources and Technology". In
Proceedings of the 6th International Conference of Language Resources and Evaluation (LREC 2008). European

Language Resources Association (ELRA) <http://www.lrec-conf.org/proceedings/Irec2008/pdf/364_paper.pdf>

Gavrilidou, Maria, Penny Labropoulou, Elina Desipri, Stelios Piperidis, Haris Papageorgiou, Monica Monachini,
et al. (2012) "The META-SHARE Metadata Schema for the Description of Language Resources". In Proceedings
of the Eighth International Conference on Language Resources and Evaluation (LREC2012), Istanbul, Turkey.
European Language Resources Association (ELRA) <http://www.lrec-

conf.org/proceedings/Irec2012/pdf/998_Paper.pdf>

Ide, Nancy, Keith Suderman, James Pustejovsky, Eric Nyberg, Christopher Cieri, and Marc Verhagen (2016) "The
Language Application Grid and Galaxy". In Proceedings of the Tenth International Conference on Language

Resourcesand Evaluation (LREC 2016), Portoroz, Slovenia. European Language Resources Association (ELRA)

Jorg, Brigitte, Hans Uszkoreit and Alastair Burt (2010) "LT World: Ontology and Reference Information Portal".
In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010),

Malta. European Language Resources Association (ELRA)

Labropoulou, Penny, Dimitris Galanis, Antonis Lempesis, Mark Greenwood, Petr Knoth, Richard Eckart de
Castilho, et al. (2018) "OpenMinTeD: A platform Facilitating Text Mining of Scholarly Content". In WOSP 2018
Workshop Proceedings, Eleventh International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources Association (ELRA) <http://Irec-
conf.org/workshops/Irec2018/W24/pdf/13_W24.pdf>

McCrae, John, Penny Labropoulou, Jorge Gracia, Marta Villegas, Victor Rodriguez-Doncel, and Philipp Cimiano
(2015) "One Ontology to Bind Them All: The META-SHARE OWL Ontology for the Interoperability of Linguistic
Datasets on the Web". In The Semantic Web: ESWC 2015 Satellite Events, ed. by Fabien Gandon, Christophe
Guéret, Serena Villata, John Breslin, Catherine Faron-Zucker, and Antoine Zimmermann, Lecture Notes in
Computer Science, pp. 271-82. Springer International Publishing
<https://link.springer.com/chapter/10.1007/978-3-319-25639-9_42>

Okman, Lior, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes and Jenny Abramov (2011). "Security Issues in NoSQL
Databases". 10.1109/TrustCom.2011.70.

Piperidis, Stelios, Penny Labropoulou, Miltos Deligiannis, and Maria Giagkou (2018) "Managing Public Sector
Data for Multilingual Applications Development". In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association
(ELRA) <http://www.lrec-conf.org/proceedings/Irec2018/pdf/648.pdf>

Wilkinson, Mark D., Michel Dumontier, lJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, et
al. (2016) "The FAIR Guiding Principles for Scientific Data Management and Stewardship". Scientific Data, 3,
160018 <https://doi.org/10.1038/sdata.2016.18>

ELG 36/36

